Environmental Geosciences, Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland.
Department of Environmental Sciences - Botany, University of Basel, 4056 Basel, Switzerland.
Sci Total Environ. 2023 Jun 1;875:162638. doi: 10.1016/j.scitotenv.2023.162638. Epub 2023 Mar 7.
Rapidly changing land use patterns and frequent extreme weather events have resulted in an increased sediment flux to freshwater systems globally, highlighting the need for land-use-based sediment source fingerprinting. Application of variability in hydrogen isotope compositions (δH values) of vegetation-specific biomarkers from soils and sediments is relatively underexplored for land-use-based freshwater suspended sediment (SS) source fingerprinting, but has the potential to complement the information from routinely applied carbon isotope analysis and provide new insights. We analysed δH values of long-chain fatty acids (LCFAs) as vegetation-specific biomarkers in source soils and SS collected from the mixed land use Tarland catchment (74 km) in NE Scotland, to identify stream SS sources and quantify their contributions to SS. Plant growth form was the primary control on source soils LCFAs (n-C, n-C, n-C) δH variability, while the isotopic composition of source water had no significant control. Forest and heather moorland soils covered with dicotyledonous and gymnosperm species were differentiated from arable land and grasslands soils covered with monocotyledonous species. SS samples collected for fourteen months from the Tarland catchment with a nested sampling approach showed monocot-based land use (cereal crops, grassland) to be the major source of SS with 71 ± 11% contribution on catchment-wide scale averaged throughout the sampling period. Storm events after a dry summer period and sustained high flow conditions in the streams during autumn and early winter suggested enhanced connectivity of more distant forest and heather moorland land uses covering relatively steep topography. This was shown by an increased contribution (44 ± 8%) on catchment-wide scale from dicot and gymnosperm-based land uses during the corresponding period. Our study demonstrated successful application of vegetation-specificity in δH values of LCFAs for land-use-based freshwater SS source fingerprinting in a mesoscale catchment where δH values of LCFAs were primarily controlled by plant growth forms.
快速变化的土地利用模式和频繁的极端天气事件导致全球向淡水系统输送的泥沙通量增加,这凸显了基于土地利用的泥沙源指纹识别的必要性。利用土壤和沉积物中植被特异性生物标志物的氢同位素组成(δH 值)的变异性来进行基于土地利用的淡水悬浮物(SS)源指纹识别的应用相对较少,但具有补充常规应用的碳同位素分析信息并提供新见解的潜力。我们分析了源自苏格兰东北部混合土地利用的 Tarland 集水区(74 平方公里)的源土壤和 SS 中长链脂肪酸(LCFA)作为植被特异性生物标志物的 δH 值,以识别溪流 SS 的来源并量化其对 SS 的贡献。植物生长形式是源土壤 LCFAs(n-C、n-C、n-C)δH 变异性的主要控制因素,而源水的同位素组成没有显著的控制作用。覆盖有双子叶和裸子植物的森林和石南荒地土壤与耕地和覆盖有单子叶植物的草地土壤区分开来。采用嵌套采样方法在 Tarland 集水区采集了 14 个月的 SS 样本,结果表明,基于单子叶植物的土地利用(谷物作物、草地)是 SS 的主要来源,在整个采样期间,在集水区范围内的平均贡献为 71±11%。在一个干燥的夏季之后发生的暴雨事件以及秋季和初冬溪流中持续的高流量条件表明,距离较远的森林和石南荒地土地利用的连通性增强,这些土地利用覆盖着相对陡峭的地形。在相应时期,基于双子叶和裸子植物的土地利用在集水区范围内的贡献增加了(44±8%)。本研究成功地将 LCFAs 的 δH 值应用于基于土地利用的中尺度集水区淡水 SS 源指纹识别中,在该集水区中,LCFAs 的 δH 值主要受植物生长形式的控制。