Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
Nat Commun. 2023 Mar 9;14(1):1302. doi: 10.1038/s41467-022-35635-1.
Active field theories, such as the paradigmatic model known as 'active model B+', are simple yet very powerful tools for describing phenomena such as motility-induced phase separation. No comparable theory has been derived yet for the underdamped case. In this work, we introduce active model I+, an extension of active model B+ to particles with inertia. The governing equations of active model I+ are systematically derived from the microscopic Langevin equations. We show that, for underdamped active particles, thermodynamic and mechanical definitions of the velocity field no longer coincide and that the density-dependent swimming speed plays the role of an effective viscosity. Moreover, active model I+ contains an analog of the Schrödinger equation in Madelung form as a limiting case, allowing one to find analoga of the quantum-mechanical tunnel effect and of fuzzy dark matter in active fluids. We investigate the active tunnel effect analytically and via numerical continuation.
主动场理论,如著名的“主动模型 B+”,是描述诸如动力诱导相分离等现象的简单而强大的工具。但对于欠阻尼的情况,尚未得出类似的理论。在这项工作中,我们引入了主动模型 I+,这是对具有惯性的粒子的主动模型 B+的扩展。主动模型 I+的控制方程是从微观 Langevin 方程系统地推导出来的。我们表明,对于欠阻尼的主动粒子,速度场的热力学和力学定义不再重合,并且密度相关的游动速度起着有效粘度的作用。此外,主动模型 I+包含一个马德隆形式的薛定谔方程的类似物作为极限情况,这使得人们可以在主动流体中找到量子力学隧道效应和模糊暗物质的类似物。我们通过数值连续和解析的方式研究了主动隧道效应。