Department of Mathematics, Indiana University, Bloomington, IN 47405, USA.
Math Biosci Eng. 2023 Jan;20(3):4322-4352. doi: 10.3934/mbe.2023201. Epub 2022 Dec 22.
The Togashi Kaneko model (TK model) is a simple stochastic reaction network that displays discreteness-induced transitions between meta-stable patterns. Here we study a constrained Langevin approximation (CLA) of this model. This CLA, derived under the classical scaling, is an obliquely reflected diffusion process on the positive orthant and hence respects the constraint that chemical concentrations are never negative. We show that the CLA is a Feller process, is positive Harris recurrent and converges exponentially fast to the unique stationary distribution. We also characterize the stationary distribution and show that it has finite moments. In addition, we simulate both the TK model and its CLA in various dimensions. For example, we describe how the TK model switches between meta-stable patterns in dimension six. Our simulations suggest that, when the volume of the vessel in which all of the reactions that take place is large, the CLA is a good approximation of the TK model in terms of both the stationary distribution and the transition times between patterns.
Togashi-Kaneko 模型(TK 模型)是一种简单的随机反应网络,在元稳定模式之间表现出离散诱导转变。在这里,我们研究了这个模型的一个约束朗之万近似(CLA)。这个 CLA 是在经典标度下推导出来的,是正半轴上的倾斜反射扩散过程,因此遵守化学浓度永远不会为负的约束。我们证明了 CLA 是一个 Feller 过程,是正 Harris 递归的,并且以指数速度快速收敛到唯一的平稳分布。我们还对平稳分布进行了特征化,并表明它具有有限的矩。此外,我们在不同的维度上模拟了 TK 模型及其 CLA。例如,我们描述了 TK 模型如何在六维空间中在元稳定模式之间切换。我们的模拟表明,当发生所有反应的容器的体积很大时,CLA 在平稳分布和模式之间的转换时间方面是 TK 模型的一个很好的近似。