School of Mathematics and Physics, Xinjiang Institute of Engineering, Urumqi, Xinjiang, China.
Math Biosci Eng. 2023 Jan 6;20(3):5094-5116. doi: 10.3934/mbe.2023236.
The purpose of the article is to investigate Dirichlet boundary-value problems of the fractional p-Laplacian equation with impulsive effects. By using the Nehari manifold method, mountain pass theorem and three critical points theorem, some new results are achieved under more general growth conditions. In addition, this paper weakens the commonly used p-suplinear and p-sublinear growth conditions.
本文旨在研究具有脉冲效应的分数阶 p-Laplace 方程的 Dirichlet 边值问题。利用 Nehari 流形方法、山路定理和三个临界点定理,在更一般的增长条件下得到了一些新的结果。此外,本文还减弱了常用的 p-超线性和 p-次线性增长条件。