Suppr超能文献

基于煤矸石的胶结充填料流变和力学性能评价:一种新颖的混合机器学习方法。

Evaluation of rheological and mechanical performance of gangue-based cemented backfill material: a novel hybrid machine learning approach.

机构信息

School of Mines, China University of Mining and Technology, Xuzhou, 221116, China.

State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, 221116, China.

出版信息

Environ Sci Pollut Res Int. 2023 Apr;30(19):55699-55715. doi: 10.1007/s11356-023-26329-2. Epub 2023 Mar 10.

Abstract

Waste discharge and surface damage are the unavoidable consequences of coal mining. However, filling waste into goaf can help reuse waste materials and protect the surface environment. In this paper, it is proposed to fill coal mine goaf with gangue-based cemented backfill material (GCBM), while the rheological and mechanical performances of GCBM influence the filling effect. A method that combines laboratory experiments and machine learning is proposed to predict the GCBM performance. The correlation and significance of eleven factors that affect GCBM are analyzed using random forest method, and the nonlinear effects of the main factors on the slump and uniaxial compressive strength (UCS) are analyzed. The optimization algorithm is improved, and the improved algorithm is combined with a support vector machine to build a hybrid model. The hybrid model is systematically verified and analyzed using predictions and convergence performances. The results demonstrate that the R of the predicted and measured values is 0.93 and the root mean square error is 0.1912, indicating that the improved hybrid model can effectively predict the slump and UCS and can promote sustainable waste use.

摘要

排放废物和地表破坏是采煤不可避免的后果。然而,填充废石到采空区可以帮助再利用废物材料并保护地表环境。本文提出了利用基于矸石的胶结充填材料(GCBM)来填充煤矿采空区,而 GCBM 的流变性和力学性能会影响充填效果。提出了一种结合实验室实验和机器学习的方法来预测 GCBM 的性能。采用随机森林方法分析了十一个影响 GCBM 的因素的相关性和显著性,并分析了主要因素对坍落度和单轴抗压强度(UCS)的非线性影响。改进了优化算法,并将改进后的算法与支持向量机相结合,构建了混合模型。使用预测值和收敛性能对混合模型进行了系统的验证和分析。结果表明,预测值与实测值的 R 为 0.93,均方根误差为 0.1912,表明改进后的混合模型可以有效地预测坍落度和 UCS,能够促进可持续的废物利用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验