Suppr超能文献

胰岛素泵治疗 1 型糖尿病患者的自我护理和血糖控制的监督机器学习算法预测的概念验证研究。

Proof-of-Concept Study of Using Supervised Machine Learning Algorithms to Predict Self-Care and Glycemic Control in Type 1 Diabetes Patients on Insulin Pump Therapy.

机构信息

Department of Pharmacy Practice, College of Clinical Pharmacy, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia.

Department of Clinical Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; Center for Health Outcomes & PharmacoEconomic Research, University of Arizona, Tucson, Arizona.

出版信息

Endocr Pract. 2023 Jun;29(6):448-455. doi: 10.1016/j.eprac.2023.03.002. Epub 2023 Mar 8.

Abstract

OBJECTIVE

Using supervised machine learning algorithms (SMLAs), we built models to predict the probability of type 1 diabetes mellitus patients on insulin pump therapy for meeting insulin pump self-management behavioral (IPSMB) criteria and achieving good glycemic response within 6 months.

METHODS

This was a single-center retrospective chart review of 100 adult type 1 diabetes mellitus patients on insulin pump therapy (≥6 months). Three SMLAs were deployed: multivariable logistic regression (LR), random forest (RF), and K-nearest neighbor (k-NN); validated using repeated three-fold cross-validation. Performance metrics included area under the curve-Receiver of characteristics for discrimination and Brier scores for calibration.

RESULTS

Variables predictive of adherence with IPSMB criteria were baseline hemoglobin A1c, continuous glucose monitoring, and sex. The models had comparable discriminatory power (LR = 0.74; RF = 0.74; k-NN = 0.72), with the RF model showing better calibration (Brier = 0.151). Predictors of the good glycemic response included baseline hemoglobin A1c, entering carbohydrates, and following the recommended bolus dose, with models comparable in discriminatory power (LR = 0.81, RF = 0.80, k-NN = 0.78) but the RF model being better calibrated (Brier = 0.099).

CONCLUSION

These proof-of-concept analyses demonstrate the feasibility of using SMLAs to develop clinically relevant predictive models of adherence with IPSMB criteria and glycemic control within 6 months. Subject to further study, nonlinear prediction models may perform better.

摘要

目的

使用有监督机器学习算法(SMLAs),我们构建模型以预测接受胰岛素泵治疗的 1 型糖尿病患者达到胰岛素泵自我管理行为(IPSMB)标准和在 6 个月内实现良好血糖控制的可能性。

方法

这是一项针对 100 名接受胰岛素泵治疗(≥6 个月)的成年 1 型糖尿病患者的单中心回顾性图表审查。部署了三种 SMLAs:多变量逻辑回归(LR)、随机森林(RF)和 K-最近邻(k-NN);通过重复三折交叉验证进行验证。性能指标包括区分度的曲线下面积-特征接收者和校准的 Brier 评分。

结果

与 IPSMB 标准依从性相关的预测变量包括基线糖化血红蛋白、连续血糖监测和性别。这些模型具有相当的判别能力(LR=0.74;RF=0.74;k-NN=0.72),RF 模型具有更好的校准效果(Brier=0.151)。良好血糖控制的预测因素包括基线糖化血红蛋白、输入碳水化合物和遵循推荐的推注剂量,模型在判别能力方面相当(LR=0.81,RF=0.80,k-NN=0.78),但 RF 模型的校准效果更好(Brier=0.099)。

结论

这些概念验证分析证明了使用 SMLAs 开发与 IPSMB 标准依从性和 6 个月内血糖控制相关的临床相关预测模型的可行性。在进一步研究的基础上,非线性预测模型可能会有更好的表现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验