Suppr超能文献

基于同态加密的医疗数据安全共享方案研究。

Research on medical data security sharing scheme based on homomorphic encryption.

机构信息

Department of Information and Communications Engineering, Nanjing Institute of Technology, Nanjing 211167, China.

出版信息

Math Biosci Eng. 2023 Jan;20(2):2261-2279. doi: 10.3934/mbe.2023106. Epub 2022 Nov 17.

Abstract

With the deep integration of "AI + medicine", AI-assisted technology has been of great help to human beings in the medical field, especially in the area of predicting and diagnosing diseases based on big data, because it is faster and more accurate. However, concerns about data security seriously hinder data sharing among medical institutions. To fully exploit the value of medical data and realize data collaborative sharing, we developed a medical data security sharing scheme based on the C/S communication mode and constructed a federated learning architecture that uses homomorphic encryption technology to protect training parameters. Here, we chose the Paillier algorithm to realize the additive homomorphism to protect the training parameters. Clients do not need to share local data, but only upload the trained model parameters to the server. In the process of training, a distributed parameter update mechanism is introduced. The server is mainly responsible for issuing training commands and weights, aggregating the local model parameters from the clients and predicting the joint diagnostic results. The client mainly uses the stochastic gradient descent algorithm for gradient trimming, updating and transmitting the trained model parameters back to the server. In order to test the performance of this scheme, a series of experiments was conducted. From the simulation results, we can know that the model prediction accuracy is related to the global training rounds, learning rate, batch size, privacy budget parameters etc. The results show that this scheme realizes data sharing while protecting data privacy, completes the accurate prediction of diseases and has a good performance.

摘要

随着“AI+医学”的深度融合,人工智能辅助技术在医疗领域对人类帮助巨大,尤其是在基于大数据预测和诊断疾病方面,因为它更快、更准确。然而,数据安全问题引发的担忧严重阻碍了医疗机构之间的数据共享。为了充分挖掘医疗数据的价值,实现数据协同共享,我们开发了一种基于 C/S 通信模式的医疗数据安全共享方案,并构建了使用同态加密技术保护训练参数的联邦学习架构。在这里,我们选择了 Paillier 算法来实现加法同态,以保护训练参数。客户端不需要共享本地数据,只需将训练后的模型参数上传到服务器。在训练过程中,引入了分布式参数更新机制。服务器主要负责发布训练命令和权重,从客户端聚合本地模型参数,并预测联合诊断结果。客户端主要使用随机梯度下降算法进行梯度修剪、更新和将训练后的模型参数传输回服务器。为了测试该方案的性能,进行了一系列实验。从模拟结果可以看出,模型的预测精度与全局训练轮数、学习率、批量大小、隐私预算参数等有关。结果表明,该方案在保护数据隐私的同时实现了数据共享,完成了疾病的准确预测,具有良好的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验