Suppr超能文献

人工智能在法医牙科学中的决策工具:I3M 的初步研究。

Artificial Intelligence as a Decision-Making Tool in Forensic Dentistry: A Pilot Study with I3M.

机构信息

Pôle d'Odontologie, Hospices Civils de Lyon, 69008 Lyon, France.

Faculté d'Odontologie, Université Claude Bernard Lyon 1, Université de Lyon, 69372 Lyon, France.

出版信息

Int J Environ Res Public Health. 2023 Mar 6;20(5):4620. doi: 10.3390/ijerph20054620.

Abstract

Expert determination of the third molar maturity index (I3M) constitutes one of the most common approaches for dental age estimation. This work aimed to investigate the technical feasibility of creating a decision-making tool based on I3M to support expert decision-making. Methods: The dataset consisted of 456 images from France and Uganda. Two deep learning approaches (Mask R-CNN, U-Net) were compared on mandibular radiographs, leading to a two-part instance segmentation (apical and coronal). Then, two topological data analysis approaches were compared on the inferred mask: one with a deep learning component (TDA-DL), one without (TDA). Regarding mask inference, U-Net had a better accuracy (mean intersection over union metric (mIoU)), 91.2% compared to 83.8% for Mask R-CNN. The combination of U-Net with TDA or TDA-DL to compute the I3M score revealed satisfying results in comparison with a dental forensic expert. The mean ± SD absolute error was 0.04 ± 0.03 for TDA, and 0.06 ± 0.04 for TDA-DL. The Pearson correlation coefficient of the I3M scores between the expert and a U-Net model was 0.93 when combined with TDA and 0.89 with TDA-DL. This pilot study illustrates the potential feasibility to automate an I3M solution combining a deep learning and a topological approach, with 95% accuracy in comparison with an expert.

摘要

第三磨牙成熟度指数(I3M)的专家判定是最常用的牙齿年龄估测方法之一。本研究旨在探索基于 I3M 建立决策工具以支持专家决策的技术可行性。方法:该数据集由来自法国和乌干达的 456 张下颌骨 X 光片组成。我们比较了两种深度学习方法(Mask R-CNN、U-Net)在这些 X 光片上的表现,以实现对根尖和冠部的两部分实例分割。然后,我们比较了两种拓扑数据分析方法(有深度学习成分的 TDA-DL 和无深度学习成分的 TDA)在推断出的掩模上的表现。在掩模推断方面,U-Net 的准确性(平均交并比度量(mIoU))更高,为 91.2%,而 Mask R-CNN 为 83.8%。将 U-Net 与 TDA 或 TDA-DL 相结合来计算 I3M 评分,与法医牙科专家的评分结果相比,结果令人满意。TDA 的平均绝对误差为 0.04 ± 0.03,TDA-DL 的平均绝对误差为 0.06 ± 0.04。当与 TDA 结合时,专家与 U-Net 模型之间的 I3M 评分的 Pearson 相关系数为 0.93,与 TDA-DL 结合时为 0.89。本研究初步表明,使用深度学习和拓扑学方法自动生成 I3M 解决方案具有可行性,与专家评估相比,准确率可达 95%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afdb/10002153/ea8413160724/ijerph-20-04620-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验