Pôle d'Odontologie, Hospices Civils de Lyon, 69008 Lyon, France.
Faculté d'Odontologie, Université Claude Bernard Lyon 1, Université de Lyon, 69372 Lyon, France.
Int J Environ Res Public Health. 2023 Mar 6;20(5):4620. doi: 10.3390/ijerph20054620.
Expert determination of the third molar maturity index (I3M) constitutes one of the most common approaches for dental age estimation. This work aimed to investigate the technical feasibility of creating a decision-making tool based on I3M to support expert decision-making. Methods: The dataset consisted of 456 images from France and Uganda. Two deep learning approaches (Mask R-CNN, U-Net) were compared on mandibular radiographs, leading to a two-part instance segmentation (apical and coronal). Then, two topological data analysis approaches were compared on the inferred mask: one with a deep learning component (TDA-DL), one without (TDA). Regarding mask inference, U-Net had a better accuracy (mean intersection over union metric (mIoU)), 91.2% compared to 83.8% for Mask R-CNN. The combination of U-Net with TDA or TDA-DL to compute the I3M score revealed satisfying results in comparison with a dental forensic expert. The mean ± SD absolute error was 0.04 ± 0.03 for TDA, and 0.06 ± 0.04 for TDA-DL. The Pearson correlation coefficient of the I3M scores between the expert and a U-Net model was 0.93 when combined with TDA and 0.89 with TDA-DL. This pilot study illustrates the potential feasibility to automate an I3M solution combining a deep learning and a topological approach, with 95% accuracy in comparison with an expert.
第三磨牙成熟度指数(I3M)的专家判定是最常用的牙齿年龄估测方法之一。本研究旨在探索基于 I3M 建立决策工具以支持专家决策的技术可行性。方法:该数据集由来自法国和乌干达的 456 张下颌骨 X 光片组成。我们比较了两种深度学习方法(Mask R-CNN、U-Net)在这些 X 光片上的表现,以实现对根尖和冠部的两部分实例分割。然后,我们比较了两种拓扑数据分析方法(有深度学习成分的 TDA-DL 和无深度学习成分的 TDA)在推断出的掩模上的表现。在掩模推断方面,U-Net 的准确性(平均交并比度量(mIoU))更高,为 91.2%,而 Mask R-CNN 为 83.8%。将 U-Net 与 TDA 或 TDA-DL 相结合来计算 I3M 评分,与法医牙科专家的评分结果相比,结果令人满意。TDA 的平均绝对误差为 0.04 ± 0.03,TDA-DL 的平均绝对误差为 0.06 ± 0.04。当与 TDA 结合时,专家与 U-Net 模型之间的 I3M 评分的 Pearson 相关系数为 0.93,与 TDA-DL 结合时为 0.89。本研究初步表明,使用深度学习和拓扑学方法自动生成 I3M 解决方案具有可行性,与专家评估相比,准确率可达 95%。