Suppr超能文献

深度学习与水文分析相结合,从黄河流域的遥感图像和数字高程模型中识别淤地坝系统。

Combining Deep Learning and Hydrological Analysis for Identifying Check Dam Systems from Remote Sensing Images and DEMs in the Yellow River Basin.

机构信息

School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China.

School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 211800, China.

出版信息

Int J Environ Res Public Health. 2023 Mar 6;20(5):4636. doi: 10.3390/ijerph20054636.

Abstract

Identifying and extracting check dams is of great significance for soil and water conservation, agricultural management, and ecological assessment. In the Yellow River Basin, the check dam, as a system, generally comprises dam locations and dam-controlled areas. Previous research, however, has focused on dam-controlled areas and has not yet identified all elements of check dam systems. This paper presents a method for automatically identifying check dam systems from digital elevation model (DEM) and remote sensing images. We integrated deep learning and object-based image analysis (OBIA) methods to extract the dam-controlled area's boundaries, and then extracted the location of the check dam using the hydrological analysis method. A case study in the Jiuyuangou watershed shows that the precision and recall of the proposed dam-controlled area extraction approach are 98.56% and 82.40%, respectively, and the F1 score value is 89.76%. The completeness of the extracted dam locations is 94.51%, and the correctness is 80.77%. The results show that the proposed method performs well in identifying check dam systems and can provide important basic data for the analysis of spatial layout optimization and soil and water loss assessment.

摘要

识别和提取淤地坝对于水土保持、农业管理和生态评估具有重要意义。在黄河流域,淤地坝系统一般包括坝址和坝控区。然而,以往的研究主要集中在坝控区,尚未识别淤地坝系统的所有要素。本文提出了一种从数字高程模型(DEM)和遥感图像中自动识别淤地坝系统的方法。我们将深度学习和基于对象的图像分析(OBIA)方法相结合,提取了坝控区的边界,然后利用水文分析方法提取了淤地坝的位置。在九元沟流域的案例研究中,所提出的坝控区提取方法的精度和召回率分别为 98.56%和 82.40%,F1 值为 89.76%。提取的坝址的完整性为 94.51%,正确性为 80.77%。结果表明,该方法在识别淤地坝系统方面表现良好,可为空间布局优化和水土流失评估分析提供重要的基础数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d44d/10002097/8d27fbcb5a4a/ijerph-20-04636-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验