Departamento de Química Física y Química Inorgánica, Facultad de Ciencias-I.U. CINQUIMA, Universidad de Valladolid, E-47011 Valladolid, Spain.
Institut des Sciences Moléculaires d'Orsay (ISMO), UMR8214, Université Paris-Saclay, CNRS, Bat. 520, F-91405 Orsay, France.
Int J Mol Sci. 2023 Feb 23;24(5):4390. doi: 10.3390/ijms24054390.
Hydrogen bonds and stacking interactions are pivotal in biological mechanisms, although their proper characterisation within a molecular complex remains a difficult task. We used quantum mechanical calculations to characterise the complex between caffeine and phenyl-β-D-glucopyranoside, in which several functional groups of the sugar derivative compete with each other to attract caffeine. Calculations at different levels of theory (M06-2X/6-311++G(d,p) and B3LYP-ED=GD3BJ/def2TZVP) agree to predict several structures similar in stability (relative energy) but with different affinity (binding energy). These computational results were experimentally verified by laser infrared spectroscopy, through which the caffeine·phenyl-β-D-glucopyranoside complex was identified in an isolated environment, produced under supersonic expansion conditions. The experimental observations correlate with the computational results. Caffeine shows intermolecular interaction preferences that combine both hydrogen bonding and stacking interactions. This dual behaviour had already been observed with phenol, and now with phenyl-β-D-glucopyranoside, it is confirmed and maximised. In fact, the size of the complex's counterparts affects the maximisation of the intermolecular bond strength because of the conformational adaptability given by the stacking interaction. Comparison with the binding of caffeine within the orthosteric site of the A2A adenosine receptor shows that the more strongly bound caffeine·phenyl-β-D-glucopyranoside conformer mimics the interactions occurring within the receptor.
氢键和堆积相互作用在生物机制中至关重要,尽管在分子复合物中准确描述它们仍然是一项具有挑战性的任务。我们使用量子力学计算来描述咖啡因和苯-β-D-吡喃葡萄糖苷之间的复合物,其中糖衍生物的几个官能团相互竞争,以吸引咖啡因。在不同理论水平(M06-2X/6-311++G(d,p) 和 B3LYP-ED=GD3BJ/def2TZVP)的计算都同意预测几个稳定性(相对能量)相似但亲和力(结合能)不同的结构。这些计算结果通过激光红外光谱实验得到了验证,通过这种方法,在超声速膨胀条件下产生的隔离环境中,鉴定出了咖啡因·苯-β-D-吡喃葡萄糖苷复合物。实验观察与计算结果相关。咖啡因表现出的分子间相互作用偏好结合了氢键和堆积相互作用。这种双重行为已经在苯酚中观察到,现在在苯-β-D-吡喃葡萄糖苷中得到了证实和最大化。事实上,由于堆积相互作用赋予的构象适应性,复合物对应物的大小会影响分子间键强度的最大化。与咖啡因在 A2A 腺苷受体的变构结合位点的结合进行比较表明,结合更紧密的咖啡因·苯-β-D-吡喃葡萄糖苷构象模拟了在受体中发生的相互作用。