Suppr超能文献

基于多模态早期融合方法的海上无人机着陆平台的端到端检测。

End-to-End Detection of a Landing Platform for Offshore UAVs Based on a Multimodal Early Fusion Approach.

机构信息

Faculty of Engineering, University of Porto (FEUP), 4200-465 Porto, Portugal.

Centre for Robotics and Autonomous Systems-INESC TEC, 4200-465 Porto, Portugal.

出版信息

Sensors (Basel). 2023 Feb 22;23(5):2434. doi: 10.3390/s23052434.

Abstract

A perception module is a vital component of a modern robotic system. Vision, radar, thermal, and LiDAR are the most common choices of sensors for environmental awareness. Relying on singular sources of information is prone to be affected by specific environmental conditions (e.g., visual cameras are affected by glary or dark environments). Thus, relying on different sensors is an essential step to introduce robustness against various environmental conditions. Hence, a perception system with sensor fusion capabilities produces the desired redundant and reliable awareness critical for real-world systems. This paper proposes a novel early fusion module that is reliable against individual cases of sensor failure when detecting an offshore maritime platform for UAV landing. The model explores the early fusion of a still unexplored combination of visual, infrared, and LiDAR modalities. The contribution is described by suggesting a simple methodology that intends to facilitate the training and inference of a lightweight state-of-the-art object detector. The early fusion based detector achieves solid detection recalls up to 99% for all cases of sensor failure and extreme weather conditions such as glary, dark, and foggy scenarios in fair real-time inference duration below 6 ms.

摘要

感知模块是现代机器人系统的重要组成部分。视觉、雷达、热成像和 LiDAR 是环境感知最常用的传感器选择。依赖单一的信息源容易受到特定环境条件的影响(例如,视觉相机受强光或黑暗环境的影响)。因此,依赖不同的传感器是引入对各种环境条件的鲁棒性的必要步骤。因此,具有传感器融合功能的感知系统可以产生对现实世界系统至关重要的冗余和可靠的感知。本文提出了一种新颖的早期融合模块,当用于检测海上无人机着陆的海上平台时,该模块在单个传感器发生故障的情况下具有可靠性。该模型探索了视觉、红外和 LiDAR 模式的一种尚未探索的组合的早期融合。该贡献通过提出一种简单的方法来描述,旨在促进轻量级最先进的目标检测器的训练和推断。基于早期融合的检测器在所有传感器故障和极端天气条件下(例如,强光、黑暗和雾天场景)实现了高达 99%的稳定检测召回率,在公平的实时推断时间内低于 6 毫秒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27ad/10006912/29e2e6feb6c1/sensors-23-02434-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验