Suppr超能文献

利用 Sentinel 2 和 GF 系列卫星图像组合对中国西南地区火灾严重程度进行制图。

Mapping Fire Severity in Southwest China Using the Combination of Sentinel 2 and GF Series Satellite Images.

机构信息

Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China.

Sichuan Forestry and Grassland Inventory and Planning Institute, Chengdu 610081, China.

出版信息

Sensors (Basel). 2023 Feb 23;23(5):2492. doi: 10.3390/s23052492.

Abstract

Fire severity mapping can capture heterogeneous fire severity patterns over large spatial extents. Although numerous remote sensing approaches have been established, regional-scale fire severity mapping at fine spatial scales (<5 m) from high-resolution satellite images is challenging. The fire severity of a vast forest fire that occurred in Southwest China was mapped at 2 m spatial resolution by random forest models using Sentinel 2 and GF series remote sensing images. This study demonstrated that using the combination of Sentinel 2 and GF series satellite images showed some improvement (from 85% to 91%) in global classification accuracy compared to using only Sentinel 2 images. The classification accuracy of unburnt, moderate, and high severity classes was significantly higher (>85%) than the accuracy of low severity classes in both cases. Adding high-resolution GF series images to the training dataset reduced the probability of low severity being under-predicted and improved the accuracy of the low severity class from 54.55% to 72.73%. RdNBR was the most important feature, and the red edge bands of Sentinel 2 images had relatively high importance. Additional studies are needed to explore the sensitivity of different spatial scales satellite images for mapping fire severity at fine spatial scales across various ecosystems.

摘要

火灾严重程度制图可以在较大的空间范围内捕捉到不均匀的火灾严重程度模式。尽管已经建立了许多遥感方法,但从高分辨率卫星图像以精细的空间尺度(<5 米)进行区域尺度的火灾严重程度制图仍然具有挑战性。本研究使用随机森林模型,结合 Sentinel-2 和 GF 系列遥感图像,以 2 米的空间分辨率对中国西南地区发生的一场大规模森林火灾的火灾严重程度进行了制图。本研究表明,与仅使用 Sentinel-2 图像相比,使用 Sentinel-2 和 GF 系列卫星图像的组合可以提高全局分类精度(从 85%提高到 91%)。在两种情况下,未燃烧、中度和高度严重程度类别的分类精度都显著高于(>85%)低严重程度类别的精度。在训练数据集中添加高分辨率 GF 系列图像可以降低低估低严重程度的概率,并将低严重程度类别的精度从 54.55%提高到 72.73%。RdNBR 是最重要的特征,Sentinel-2 图像的红色边缘波段具有相对较高的重要性。需要进一步研究不同空间尺度卫星图像对在不同生态系统中以精细空间尺度进行火灾严重程度制图的敏感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b98/10007207/8ec1ae82a346/sensors-23-02492-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验