Suppr超能文献

基于 GAN 的对抗训练模型评估。

Evaluation of GAN-Based Model for Adversarial Training.

机构信息

Department of Electrical, Computer and Software Engineering, Ontario Tech University, Oshawa, ON L1G 0C5, Canada.

出版信息

Sensors (Basel). 2023 Mar 1;23(5):2697. doi: 10.3390/s23052697.

Abstract

Deep learning has been successfully utilized in many applications, but it is vulnerable to adversarial samples. To address this vulnerability, a generative adversarial network (GAN) has been used to train a robust classifier. This paper presents a novel GAN model and its implementation to defend against L and L constraint gradient-based adversarial attacks. The proposed model is inspired by some of the related work, but it includes multiple new designs such as a dual generator architecture, four new generator input formulations, and two unique implementations with L and L norm constraint vector outputs. The new formulations and parameter settings of GAN are proposed and evaluated to address the limitations of adversarial training and defensive GAN training strategies, such as gradient masking and training complexity. Furthermore, the training epoch parameter has been evaluated to determine its effect on the overall training results. The experimental results indicate that the optimal formulation of GAN adversarial training must utilize more gradient information from the target classifier. The results also demonstrate that GANs can overcome gradient masking and produce effective perturbation to augment the data. The model can defend PGD L 128/255 norm perturbation with over 60% accuracy and PGD L 8/255 norm perturbation with around 45% accuracy. The results have also revealed that robustness can be transferred between the constraints of the proposed model. In addition, a robustness-accuracy tradeoff was discovered, along with overfitting and the generalization capabilities of the generator and classifier. These limitations and ideas for future work will be discussed.

摘要

深度学习在许多应用中已经取得了成功,但它容易受到对抗样本的影响。为了解决这个问题,生成对抗网络(GAN)已被用于训练鲁棒的分类器。本文提出了一种新的 GAN 模型及其实现,以防御 L 和 L 约束梯度对抗攻击。所提出的模型受到了一些相关工作的启发,但它包括了多个新的设计,如双生成器架构、四个新的生成器输入公式,以及两个具有 L 和 L 范数约束向量输出的独特实现。提出并评估了 GAN 的新公式和参数设置,以解决对抗训练和防御性 GAN 训练策略的局限性,如梯度掩蔽和训练复杂度。此外,还评估了训练 epoch 参数对整体训练结果的影响。实验结果表明,GAN 对抗训练的最佳公式必须利用目标分类器的更多梯度信息。结果还表明,GAN 可以克服梯度掩蔽,并产生有效的扰动来增强数据。该模型可以防御 PGD L 128/255 范数扰动,准确率超过 60%,PGD L 8/255 范数扰动,准确率约为 45%。结果还表明,稳健性可以在提出的模型的约束之间转移。此外,还发现了稳健性与准确性之间的权衡,以及生成器和分类器的过拟合和泛化能力的局限性和未来工作的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae94/10007326/5d3877170896/sensors-23-02697-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验