Computer Science Department, The University of British Columbia, BC, V6T 1Z4, Canada.
Electrical and Computer Engineering Department, The University of British Columbia, BC, V6T 1Z4, Canada.
Med Image Anal. 2023 Dec;90:102965. doi: 10.1016/j.media.2023.102965. Epub 2023 Sep 22.
Deep Learning-based image synthesis techniques have been applied in healthcare research for generating medical images to support open research and augment medical datasets. Training generative adversarial neural networks (GANs) usually require large amounts of training data. Federated learning (FL) provides a way of training a central model using distributed data while keeping raw data locally. However, given that the FL server cannot access the raw data, it is vulnerable to backdoor attacks, an adversarial by poisoning training data. Most backdoor attack strategies focus on classification models and centralized domains. It is still an open question if the existing backdoor attacks can affect GAN training and, if so, how to defend against the attack in the FL setting. In this work, we investigate the overlooked issue of backdoor attacks in federated GANs (FedGANs). The success of this attack is subsequently determined to be the result of some local discriminators overfitting the poisoned data and corrupting the local GAN equilibrium, which then further contaminates other clients when averaging the generator's parameters and yields high generator loss. Therefore, we proposed FedDetect, an efficient and effective way of defending against the backdoor attack in the FL setting, which allows the server to detect the client's adversarial behavior based on their losses and block the malicious clients. Our extensive experiments on two medical datasets with different modalities demonstrate the backdoor attack on FedGANs can result in synthetic images with low fidelity. After detecting and suppressing the detected malicious clients using the proposed defense strategy, we show that FedGANs can synthesize high-quality medical datasets (with labels) for data augmentation to improve classification models' performance.
基于深度学习的图像合成技术已应用于医疗保健研究中,用于生成医学图像以支持开放研究和扩充医学数据集。训练生成对抗网络(GAN)通常需要大量的训练数据。联邦学习(FL)提供了一种使用分布式数据训练中央模型的方法,同时保持本地原始数据。然而,由于 FL 服务器无法访问原始数据,因此它容易受到后门攻击的影响,即通过污染训练数据来进行对抗攻击。大多数后门攻击策略都集中在分类模型和集中式领域。现有的后门攻击是否会影响联邦 GAN(FedGAN)的训练,以及如果会,如何在联邦学习环境中防御攻击,这仍然是一个悬而未决的问题。在这项工作中,我们研究了在联邦 GAN 中被忽视的后门攻击问题。随后确定该攻击的成功是由于一些本地鉴别器过度拟合中毒数据并破坏本地 GAN 平衡的结果,这会在平均生成器参数时进一步污染其他客户端,并导致生成器损失较高。因此,我们提出了 FedDetect,这是一种在联邦学习环境中防御后门攻击的有效方法,它允许服务器根据客户端的损失检测其对抗行为,并阻止恶意客户端。我们在具有不同模态的两个医学数据集上进行了广泛的实验,证明了 FedGAN 上的后门攻击会导致低保真度的合成图像。在使用所提出的防御策略检测和抑制检测到的恶意客户端后,我们表明 FedGAN 可以合成高质量的医学数据集(带标签)以进行数据扩充,从而提高分类模型的性能。