Suppr超能文献

基于联合频移/相位调制的间断采样转发干扰性能研究。

Research on Interrupted Sampling Repeater Jamming Performance Based on Joint Frequency Shift/Phase Modulation.

机构信息

School of Electronics and Communication Engineering, Sun Yat-sen University, Shenzhen 518000, China.

出版信息

Sensors (Basel). 2023 Mar 4;23(5):2812. doi: 10.3390/s23052812.

Abstract

Interrupted sampling repeater jamming (ISRJ) is a classic active coherent jamming. Due to its structural limitations, it has inherent defects such as a discontinuous time-frequency (TF) distribution, strong distribution regularity of pulse compression results, limited jamming amplitude, and strong false targets lagging behind the real target. These defects have not been fully resolved yet due to the limitation of the theoretical analysis system. Based on the analysis of the influence factors of ISRJ on the interference performance for linear-frequency-modulated (LFM) and phase-coded signals, this paper proposes an improved ISRJ method based on the joint subsection frequency shift and two-phase modulation. The coherent superposition of jamming signals at different positions for LFM signals is achieved by controlling the frequency shift matrix and the phase modulation parameters to form a strong pre-lead false target or multiple positions and ranges of blanket jamming areas. For the phase-coded signal, the pre-lead false targets are generated through code prediction and the two-phase modulation of the code sequence, resulting in similar noise interference. The simulation results show that this method can overcome the inherent defects of ISRJ.

摘要

间断采样转发干扰(ISRJ)是一种经典的主动相干干扰。由于其结构的限制,它具有不连续的时频(TF)分布、脉冲压缩结果的强分布规律、有限的干扰幅度以及强的虚假目标滞后于真实目标等固有缺陷。由于理论分析系统的限制,这些缺陷尚未得到充分解决。基于对 ISRJ 对线性调频(LFM)和相位编码信号干扰性能的影响因素的分析,本文提出了一种基于联合分段频移和双相调制的改进 ISRJ 方法。通过控制频率移位矩阵和相位调制参数,对 LFM 信号的不同位置的干扰信号进行相干叠加,形成强的超前虚假目标或多个位置和范围的全频段干扰区域。对于相位编码信号,通过码预测和码序列的双相调制生成超前虚假目标,从而产生类似的噪声干扰。仿真结果表明,该方法可以克服 ISRJ 的固有缺陷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d48/10007385/eebb2f811ec6/sensors-23-02812-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验