Suppr超能文献

生物滞留池多年磷动态建模:磷的分配、积累和输出。

Modeling multi-year phosphorus dynamics in a bioretention cell: Phosphorus partitioning, accumulation, and export.

作者信息

Zhou Bowen, Shafii Mahyar, Parsons Chris T, Passeport Elodie, Rezanezhad Fereidoun, Lisogorsky Ariel, Van Cappellen Philippe

机构信息

Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Canada; Water Institute, University of Waterloo, Waterloo, Canada.

Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Canada; Water Institute, University of Waterloo, Waterloo, Canada.

出版信息

Sci Total Environ. 2023 Jun 10;876:162749. doi: 10.1016/j.scitotenv.2023.162749. Epub 2023 Mar 10.

Abstract

Phosphorus (P) export from urban areas via stormwater runoff contributes to eutrophication of downstream aquatic ecosystems. Bioretention cells are a Low Impact Development (LID) technology promoted as a green solution to attenuate urban peak flow discharge, as well as the export of excess nutrients and other contaminants. Despite their rapidly growing implementation worldwide, a predictive understanding of the efficiency of bioretention cells in reducing urban P loadings remains limited. Here, we present a reaction-transport model to simulate the fate and transport of P in a bioretention cell facility in the greater Toronto metropolitan area. The model incorporates a representation of the biogeochemical reaction network that controls P cycling within the cell. We used the model as a diagnostic tool to determine the relative importance of processes immobilizing P in the bioretention cell. The model predictions were compared to multi-year observational data on 1) the outflow loads of total P (TP) and soluble reactive P (SRP) during the 2012-2017 period, 2) TP depth profiles collected at 4 time points during the 2012-2019 period, and 3) sequential chemical P extractions performed on core samples from the filter media layer obtained in 2019. Results indicate that exfiltration to underlying native soil was principally responsible for decreasing the surface water discharge from the bioretention cell (63 % runoff reduction). From 2012 to 2017, the cumulative outflow export loads of TP and SRP only accounted for 1 % and 2 % of the corresponding inflow loads, respectively, hence demonstrating the extremely high P reduction efficiency of this bioretention cell. Accumulation in the filter media layer was the predominant mechanism responsible for the reduction in P outflow loading (57 % retention of TP inflow load) followed by plant uptake (21 % TP retention). Of the P retained within the filter media layer, 48 % occurred in stable, 41 % in potentially mobilizable, and 11 % in easily mobilizable forms. There were no signs that the P retention capacity of the bioretention cell was approaching saturation after 7 years of operation. The reactive transport modeling approach developed here can in principle be transferred and adapted to fit other bioretention cell designs and hydrological regimes to estimate P surface loading reductions at a range of temporal scales, from a single precipitation event to long-term (i.e., multi-year) operation.

摘要

城市地区通过雨水径流输出的磷(P)会导致下游水生生态系统富营养化。生物滞留池是一种低影响开发(LID)技术,作为一种绿色解决方案,可用于减轻城市洪峰流量排放以及过量营养物质和其他污染物的输出。尽管它们在全球范围内的应用迅速增加,但对生物滞留池减少城市磷负荷效率的预测性理解仍然有限。在此,我们提出了一个反应-传输模型,以模拟大多伦多地区一个生物滞留池设施中磷的归宿和传输。该模型纳入了控制生物滞留池内磷循环的生物地球化学反应网络的表示。我们将该模型用作诊断工具,以确定生物滞留池中固定磷的过程的相对重要性。将模型预测结果与以下多年观测数据进行了比较:1)2012 - 2017年期间总磷(TP)和可溶性活性磷(SRP)的流出负荷;2)2012 - 2019年期间在4个时间点收集的TP深度剖面;3)对2019年获得的过滤介质层岩心样本进行的连续化学磷提取。结果表明,向下方原生土壤的渗滤是生物滞留池地表水排放减少的主要原因(径流减少63%)。2012年至2017年,TP和SRP的累计流出负荷分别仅占相应流入负荷的1%和2%,因此证明了该生物滞留池极高的磷去除效率。过滤介质层中的积累是磷流出负荷减少的主要机制(占TP流入负荷的57%),其次是植物吸收(占TP保留量的21%)。在过滤介质层中保留的磷中,48%以稳定形式存在,41%以潜在可移动形式存在,11%以易移动形式存在。没有迹象表明生物滞留池在运行7年后的磷保留能力接近饱和。这里开发的反应传输建模方法原则上可以转移并加以调整,以适应其他生物滞留池设计和水文状况,从而在从单次降雨事件到长期(即多年)运行的一系列时间尺度上估计磷的地表负荷减少情况。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验