Suppr超能文献

拟南芥中低氮诱导早期叶片衰老的分子框架

A molecular framework underlying low-nitrogen-induced early leaf senescence in Arabidopsis thaliana.

作者信息

Fan Hongmei, Quan Shuxuan, Ye Qing, Zhang Lei, Liu Wei, Zhu Ning, Zhang Xiaoqi, Ruan Wenyuan, Yi Keke, Crawford Nigel M, Wang Yong

机构信息

State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.

Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China.

出版信息

Mol Plant. 2023 Apr 3;16(4):756-774. doi: 10.1016/j.molp.2023.03.006. Epub 2023 Mar 11.

Abstract

Nitrogen (N) deficiency causes early leaf senescence, resulting in accelerated whole-plant maturation and severely reduced crop yield. However, the molecular mechanisms underlying N-deficiency-induced early leaf senescence remain unclear, even in the model species Arabidopsis thaliana. In this study, we identified Growth, Development and Splicing 1 (GDS1), a previously reported transcription factor, as a new regulator of nitrate (NO) signaling by a yeast-one-hybrid screen using a NO enhancer fragment from the promoter of NRT2.1. We showed that GDS1 promotes NO signaling, absorption and assimilation by affecting the expression of multiple NO regulatory genes, including Nitrate Regulatory Gene2 (NRG2). Interestingly, we observed that gds1 mutants show early leaf senescence as well as reduced NO content and N uptake under N-deficient conditions. Further analyses indicated that GDS1 binds to the promoters of several senescence-related genes, including Phytochrome-Interacting Transcription Factors 4 and 5 (PIF4 and PIF5) and represses their expression. Interestingly, we found that N deficiency decreases GDS1 protein accumulation, and GDS1 could interact with Anaphase Promoting Complex Subunit 10 (APC10). Genetic and biochemical experiments demonstrated that Anaphase Promoting Complex or Cyclosome (APC/C) promotes the ubiquitination and degradation of GDS1 under N deficiency, resulting in loss of PIF4 and PIF5 repression and consequent early leaf senescence. Furthermore, we discovered that overexpression of GDS1 could delay leaf senescence and improve seed yield and N-use efficiency (NUE) in Arabidopsis. In summary, our study uncovers a molecular framework illustrating a new mechanism underlying low-N-induced early leaf senescence and provides potential targets for genetic improvement of crop varieties with increased yield and NUE.

摘要

氮(N)缺乏会导致叶片过早衰老,从而加速整株植物的成熟并严重降低作物产量。然而,即使在模式植物拟南芥中,氮缺乏诱导叶片过早衰老的分子机制仍不清楚。在本研究中,我们通过酵母单杂交筛选,利用来自NRT2.1启动子的NO增强子片段,鉴定出先前报道的转录因子生长、发育和剪接1(GDS1)作为硝酸盐(NO)信号传导的新调节因子。我们发现GDS1通过影响多个NO调节基因的表达来促进NO信号传导、吸收和同化,这些基因包括硝酸盐调节基因2(NRG2)。有趣的是,我们观察到gds1突变体在氮缺乏条件下表现出叶片过早衰老以及NO含量和氮吸收减少。进一步分析表明,GDS1与几个衰老相关基因的启动子结合,包括光敏色素相互作用转录因子4和5(PIF4和PIF5),并抑制它们的表达。有趣的是,我们发现氮缺乏会降低GDS1蛋白积累,并且GDS1可以与后期促进复合体亚基10(APC10)相互作用。遗传和生化实验表明,在氮缺乏条件下,后期促进复合体或细胞周期体(APC/C)促进GDS1的泛素化和降解,导致PIF4和PIF5抑制作用丧失,从而导致叶片过早衰老。此外,我们发现过表达GDS1可以延缓拟南芥叶片衰老并提高种子产量和氮利用效率(NUE)。总之,我们的研究揭示了一个分子框架,阐明了低氮诱导叶片过早衰老的新机制,并为提高产量和NUE的作物品种遗传改良提供了潜在靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验