Deng Xin, Chen Jingyi, Zhang Chenyang, Yan Yong, Wu Bingzheng, Zhang Jie, Wang Gang, Wang Ruilin, Chen Jinwei
College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China.
Soochow Institute for Energy and Materials Innovations (SIEMSI), Soochow University, Suzhou 215021, Jiangsu Province, PR China.
J Colloid Interface Sci. 2023 Jun 15;640:928-939. doi: 10.1016/j.jcis.2023.03.018. Epub 2023 Mar 7.
Catalysts for the electrolysis of water are critical in the production of hydrogen for the energy industry. The use of strong metal-support interactions (SMSI) to modulate the dispersion, electron distribution, and geometry of active metals is an effective strategy for improving catalytic performance. However, in currently used catalysts, the supporting effect does not significantly contribute directly to catalytic activity. Consequently, the continued investigation of SMSI, using active metals to stimulate the supporting effect for catalytic activity, remains very challenging. Herein, the atomic layer deposition technique was employed to prepare an efficient catalyst composed of platinum nanoparticles (Pt NPs) deposited on nickel-molybdate (NiMoO) nanorods. Nickel-molybdate's oxygen vacancies (V) not only help anchor highly-dispersed Pt NPs with low loading but also strengthen the SMSI. The valuable electronic structure modulation between Pt NPs and V resulted in a low overpotential of the hydrogen and oxygen evolution reactions, returning results of 190 mV and 296 mV, respectively, at a current density of 100 mA cm in 1 M KOH. Ultimately, an ultralow potential (1.515 V) for the overall decomposition of water was achieved at 10 mA cm, outperforming state-of-art catalysts based on the Pt/C || IrO couple (1.668 V). This work aims to provide reference and a concept for the design of bifunctional catalysts that apply the SMSI effect to achieve a simultaneous catalytic effect from the metal and its support.
水电解催化剂对于能源行业制氢至关重要。利用强金属-载体相互作用(SMSI)来调节活性金属的分散度、电子分布和几何结构是提高催化性能的有效策略。然而,在目前使用的催化剂中,载体效应并没有直接对催化活性做出显著贡献。因此,持续研究SMSI,利用活性金属来激发载体对催化活性的作用,仍然极具挑战性。在此,采用原子层沉积技术制备了一种高效催化剂,该催化剂由沉积在钼酸镍(NiMoO)纳米棒上的铂纳米颗粒(Pt NPs)组成。钼酸镍的氧空位(V)不仅有助于以低负载量锚定高度分散的Pt NPs,还能增强SMSI。Pt NPs与V之间有价值的电子结构调制导致析氢反应和析氧反应的过电位较低,在1 M KOH中,电流密度为100 mA cm时,分别为190 mV和296 mV。最终,在10 mA cm时实现了水全分解的超低电位(1.515 V),优于基于Pt/C || IrO对的现有催化剂(1.668 V)。这项工作旨在为设计应用SMSI效应以实现金属及其载体同时催化作用的双功能催化剂提供参考和概念。