Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
Philos Trans A Math Phys Eng Sci. 2023 May;381(2246):20220134. doi: 10.1098/rsta.2022.0134. Epub 2023 Mar 13.
A Cartesian representation of the Taylor-Couette system in the vanishing limit of the gap between coaxial cylinders is presented, where the ratio, [Formula: see text], of the angular velocities, [Formula: see text] and [Formula: see text], of the inner and the outer cylinders, respectively, affects its axisymmetric flow structures. Our numerical stability study finds remarkable agreement with previous studies for the critical Taylor number, [Formula: see text], for the onset of axisymmetric instability. The Taylor number [Formula: see text] can be expressed as [Formula: see text], where [Formula: see text] (the rotation number) and [Formula: see text] (the Reynolds number) in the Cartesian system are related to the average and the difference of [Formula: see text] and [Formula: see text]. The instability sets in the region [Formula: see text], while the product of [Formula: see text] and [Formula: see text] is kept finite. Furthermore, we developed a numerical code to calculate nonlinear axisymmetric flows. It is found that the mean flow distortion of the axisymmetric flow is antisymmetric across the gap when [Formula: see text], while a symmetric part of the mean flow distortion appears additionally when [Formula: see text]. Our analysis also shows that for a finite [Formula: see text] all flows with [Formula: see text] approach the [Formula: see text] axis, so that the plane Couette flow system is recovered in the vanishing gap limit. This article is part of the theme issue 'Taylor-Couette and related flows on the centennial of Taylor's seminal paper (Part 2)'.
提出了一种在同轴圆柱间隙趋于零时泰勒-库埃特系统的笛卡儿表示法,其中角速度比[Formula: see text],分别为内筒和外筒的角速度,影响其轴对称流动结构。我们的数值稳定性研究与先前关于轴对称不稳定性起始的临界泰勒数[Formula: see text]的研究结果非常吻合。在笛卡尔系统中,泰勒数[Formula: see text]可以表示为[Formula: see text],其中[Formula: see text](旋转数)和[Formula: see text](雷诺数)与[Formula: see text]和[Formula: see text]的平均值和差值有关。不稳定性发生在区域[Formula: see text]中,而[Formula: see text]和[Formula: see text]的乘积保持有限。此外,我们开发了一种计算非线性轴对称流动的数值代码。当[Formula: see text]时,发现轴对称流动的平均流动变形在间隙处是反对称的,而当[Formula: see text]时,平均流动变形会出现对称部分。我们的分析还表明,对于有限的[Formula: see text],所有[Formula: see text]的流动都趋近于[Formula: see text]轴,因此在间隙趋于零时恢复平面库埃特流动系统。本文是主题为“泰勒-库埃特及相关流动:泰勒开创性论文百年纪念(第 2 部分)”的一部分。