Suppr超能文献

氧空位增强透明质酸包覆生物矿化纳米酶对活性氧增强抗肿瘤治疗的催化活性

Oxygen vacancy-enhanced catalytic activity of hyaluronic acid covered-biomineralization nanozyme for reactive oxygen species-augmented antitumor therapy.

作者信息

Zhou Peng, Wang Zhenxin, Chen Han, Yu Dehong, Dai Chengbai, Qiu Zhili, Gao Fenglei, Pan Bin, Yuan Feng

机构信息

Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.

The Affiliated Pizhou Hospital of Xuzhou Medical University, Jiangsu 221399, China.

出版信息

Int J Biol Macromol. 2023 May 1;236:124003. doi: 10.1016/j.ijbiomac.2023.124003. Epub 2023 Mar 11.

Abstract

Insufficient hydrogen peroxide content in tumor cells, unsuitable pH and low efficiency of commonly used metal catalysts severely affect the efficiency of chemodynamic therapy, resulting in unsatisfactory efficacy of chemodynamic therapy alone. For this purpose, we designed a composite nanoplatform capable of targeting tumors and selectively degrading in the tumor microenvironment (TME) to address these issues. In this work, we synthesized Au@CoO nanozyme inspired by crystal defect engineering. The addition of Au determines the formation of oxygen vacancies, accelerates electron transfer, and enhances redox activity, thus significantly enhancing the superoxide dismutase (SOD)-like and catalase (CAT)-like catalytic activities of the nanozyme. Subsequently, we camouflaged the nanozyme using a biomineralized CaCO shell to avoid damage to normal tissues by the nanozyme while effectively encapsulating the photosensitizer IR820, and finally the tumor targeting ability of the nanoplatform was enhanced by the modification of hyaluronic acid. Under near-infrared (NIR) light irradiation, the Au@CoO@CaCO/IR820@HA nanoplatform not only visualizes the treatment with multimodal imaging, but also plays a photothermal sensitizing role through various strategies, while enhancing the enzyme catalytic activity, cobalt ion-mediated chemodynamic therapy (CDT) and IR820-mediated photodynamic therapy (PDT), and achieving the synergistic enhancement of reactive oxygen species (ROS) generation.

摘要

肿瘤细胞中过氧化氢含量不足、pH值不合适以及常用金属催化剂效率低下,严重影响了化学动力学疗法的效率,导致单独的化学动力学疗法疗效不尽人意。为此,我们设计了一种能够靶向肿瘤并在肿瘤微环境(TME)中选择性降解的复合纳米平台来解决这些问题。在这项工作中,我们受晶体缺陷工程启发合成了Au@CoO纳米酶。Au的加入决定了氧空位的形成,加速了电子转移,增强了氧化还原活性,从而显著提高了纳米酶的超氧化物歧化酶(SOD)样和过氧化氢酶(CAT)样催化活性。随后,我们用生物矿化的CaCO壳层对纳米酶进行伪装,以避免纳米酶对正常组织造成损伤,同时有效地包裹了光敏剂IR820,最后通过透明质酸修饰增强了纳米平台的肿瘤靶向能力。在近红外(NIR)光照射下,Au@CoO@CaCO/IR820@HA纳米平台不仅通过多模态成像实现治疗可视化,还通过多种策略发挥光热增敏作用,同时增强酶催化活性、钴离子介导的化学动力学疗法(CDT)和IR820介导的光动力疗法(PDT),实现活性氧(ROS)生成的协同增强。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验