Suppr超能文献

鱼鳞生物炭活化过一硫酸盐和过二硫酸盐去除抗生素:N、P共掺杂生物炭的协同作用

Peroxymonosulfate and peroxydisulfate activation by fish scales biochar for antibiotics removal: Synergism of N, P-codoped biochar.

作者信息

He Qingyun, Zhao Chenhui, Tang Lin, Liu Zhifeng, Shao Binbin, Liang Qinghua, Wu Ting, Pan Yuan, Wang Jiajia, Liu Yang, Tong Shehua, Hu Tianjue

机构信息

College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.

College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.

出版信息

Chemosphere. 2023 Jun;326:138326. doi: 10.1016/j.chemosphere.2023.138326. Epub 2023 Mar 10.

Abstract

Social development is accompanied by technological progress, which commonly leads to the expansion of pollution As an essential resource of modern medical treatment, antibiotics have become a hot topic in the aspect of environmental pollution. In this study, we first used fish scales to synthesize N, P-codoped biochar catalyst (FS-BC) as peroxymonosulfate (PMS) and peroxydisulfate (PDS) activator to degrade tetracycline hydrochloride (TC). At the same time, peanut shell biochar (PS-BC) and coffee ground biochar (CG-BC) were prepared as reference materials. Among them, FS-BC exhibited the best catalytic performance due to the excellent defect structure (I/I = 1.225) and the synergism of N, P heteroatoms. PS-BC, FS-BC and CG-BC achieved degradation efficiencies of 86.26%, 99.71% and 84.41% for TC during PMS activation and 56.79%, 93.99% and 49.12% during PDS, respectively. In both FS-BC/PMS and FS-BC/PDS systems, non-free radical pathways involved singlet oxygen (O), surface-bound radicals mechanism and direct electron transfer mechanism. Structural defects, graphitic N and pyridinic N, P-C groups and positively charged sp hybridized C adjacent to graphitic N were all critical active sites. FS-BC has the potential for practical applications and development because of its robust adaptation to pH and anions and stable re-usability. This study not only provides a reference for biochar selection, but also suggests a superior strategy for TC degradation in the environment.

摘要

社会发展伴随着技术进步,这通常会导致污染的扩大。抗生素作为现代医疗的重要资源,已成为环境污染方面的热门话题。在本研究中,我们首先使用鱼鳞合成N、P共掺杂生物炭催化剂(FS-BC)作为过一硫酸盐(PMS)和过二硫酸盐(PDS)的活化剂来降解盐酸四环素(TC)。同时,制备了花生壳生物炭(PS-BC)和咖啡渣生物炭(CG-BC)作为参考材料。其中,FS-BC由于具有优异的缺陷结构(I/I = 1.225)以及N、P杂原子的协同作用,表现出最佳的催化性能。在PMS活化过程中,PS-BC、FS-BC和CG-BC对TC的降解效率分别为86.26%、99.71%和84.41%;在PDS活化过程中,降解效率分别为56.79%、93.99%和49.12%。在FS-BC/PMS和FS-BC/PDS体系中,非自由基途径涉及单线态氧(O)、表面结合自由基机制和直接电子转移机制。结构缺陷、石墨N和吡啶N、P-C基团以及与石墨N相邻的带正电的sp杂化C均为关键活性位点。FS-BC因其对pH和阴离子具有较强的适应性以及稳定的可重复使用性,具有实际应用和开发潜力。本研究不仅为生物炭的选择提供了参考,还为环境中TC的降解提出了一种优越的策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验