Suppr超能文献

MOF 衍生的 NiMoO@NiFeP 核壳纳米棒用于通过尿素电解节能析氢的界面工程。

Interface Engineering of MOF-Derived NiMoO@NiFeP Core-Shell Nanorods for Energy-Saving Hydrogen Evolution via Urea Electrolysis.

机构信息

School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.

Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo 315211, China.

出版信息

Inorg Chem. 2023 Mar 27;62(12):4960-4970. doi: 10.1021/acs.inorgchem.3c00074. Epub 2023 Mar 12.

Abstract

The development of multifunctional and durable electrocatalysts for hydrogen energy production via an energy-saving avenue is urgently desired. Urea electrolysis by substituting the oxygen evolution reaction (OER) with a more oxidizable urea oxidation reaction (UOR) has been widely used to realize energy-saving hydrogen production. Herein, metal-organic framework (MOF)-derived interface-engineered NiMoO@NiFeP core-shell nanorods as electrocatalysts are constructed. Due to the integration of the advantages of the interface synergistic effect between the NiMoO core and NiFeP shell, the as-fabricated NiMoO@NiFeP electrocatalyst demonstrates remarkable electrocatalytic performance toward the hydrogen evolution reaction (HER), OER, and UOR. In the urea electrolysis system, an ultralow cell voltage of 1.30 V is needed to drive the current density of 10 mA cm, which is 140 mV lower than that of the conventional overall water splitting system. The cost-efficient and high-performance NiMoO@NiFeP electrocatalyst paves the way to explore practical applications of energy-saving hydrogen production.

摘要

通过节能途径开发用于生产氢能的多功能且耐用的电催化剂是迫切需要的。通过用更可氧化的尿素氧化反应(UOR)替代析氧反应(OER)来进行尿素电解已被广泛用于实现节能制氢。在此,构建了金属有机框架(MOF)衍生的界面工程化 NiMoO@NiFeP 核壳纳米棒作为电催化剂。由于 NiMoO 核和 NiFeP 壳之间界面协同效应的优势的结合,所制备的 NiMoO@NiFeP 电催化剂在析氢反应(HER)、OER 和 UOR 方面表现出优异的电催化性能。在尿素电解系统中,仅需 1.30 V 的超低电池电压即可驱动 10 mA cm 的电流密度,这比传统的全水分解系统低 140 mV。这种具有成本效益和高性能的 NiMoO@NiFeP 电催化剂为探索节能制氢的实际应用铺平了道路。

相似文献

1
Interface Engineering of MOF-Derived NiMoO@NiFeP Core-Shell Nanorods for Energy-Saving Hydrogen Evolution via Urea Electrolysis.
Inorg Chem. 2023 Mar 27;62(12):4960-4970. doi: 10.1021/acs.inorgchem.3c00074. Epub 2023 Mar 12.
2
The polyoxometalates mediated preparation of phosphate-modified NiMoO with abundant O-vacancies for H production via urea electrolysis.
J Colloid Interface Sci. 2023 Jan;629(Pt A):297-309. doi: 10.1016/j.jcis.2022.08.145. Epub 2022 Aug 27.
3
Highly-dispersed 2D NiFeP/CoP heterojunction trifunctional catalyst for efficient electrolysis of water and urea.
J Colloid Interface Sci. 2024 Aug;667:543-552. doi: 10.1016/j.jcis.2024.04.059. Epub 2024 Apr 10.
4
Novel trifunctional electrocatalyst of nickel foam supported CoP/NiMoO heterostructures for overall water splitting and urea oxidation.
J Colloid Interface Sci. 2023 Oct 15;648:278-286. doi: 10.1016/j.jcis.2023.05.184. Epub 2023 Jun 2.
6
Superwettable and photothermal all-in-one electrocatalyst for boosting water/urea electrolysis.
J Colloid Interface Sci. 2023 Aug 15;644:134-145. doi: 10.1016/j.jcis.2023.04.031. Epub 2023 Apr 14.
7
Mo propellant boosting the activity of Ni-P for efficient urea-assisted water electrolysis of hydrogen evolution.
J Colloid Interface Sci. 2022 Sep 15;622:192-201. doi: 10.1016/j.jcis.2022.04.050. Epub 2022 Apr 12.
8
Construction of NiMo/MoO heterostructure on oxygen vacancy enriched NiMoO nanorods as an efficient bifunctional electrocatalyst for overall water splitting.
J Colloid Interface Sci. 2023 Nov 15;650(Pt B):1490-1499. doi: 10.1016/j.jcis.2023.07.098. Epub 2023 Jul 17.
10
Crystalline-Amorphous NiS-NiMoO Heterostructure for Durable Urea Electrolysis-Assisted Hydrogen Production at High Current Density.
ACS Appl Mater Interfaces. 2022 Oct 19;14(41):46481-46490. doi: 10.1021/acsami.2c11238. Epub 2022 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验