Zhang Jingyuan, Zhang Shasha, Zhang Xiaofeng, Ma Zhen, Wang Zhuo, Zhao Bin
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
J Colloid Interface Sci. 2023 Nov 15;650(Pt B):1490-1499. doi: 10.1016/j.jcis.2023.07.098. Epub 2023 Jul 17.
Despite great efforts over the past decade, rational design of bifunctional electrocatalysts with low cost and high efficiency still remains a challenge to achieve industrial water splitting. Herein, we synthesized the nickel-molybdenum nanorod array catalyst supported on NF (NMO@NM/MO) by a two-step process of hydrothermal and reductive annealing. Partial reduction of the NiMoO induces the structural reconstruction and formation of the NiMo/MoO heterostructure on oxygen vacancy enriched nanorod, which bring out sufficient active sites, large specific surface area and favorable interfacial charge transfer. Thanks to the unique core-shell structure with the heterostructured NiMo/MoO surface and defect-rich NiMoO core, the obtained electrocatalyst shows greatly improved hydrogen evolution reaction (HER) activity with an ultralow overpotential of 63 mV at 100 mA cm (vs. 314 mV for the NiMoO). Density function theory calculations reveal that the construction of the NiMo/MoO heterostructure effectively accelerates HO dissociation kinetics, while the defective NiMoO facilitates H* adsorption/desorption. Moreover, the heterostructure catalyst also displays excellent oxygen evolution reaction (OER) performance with the low overpotential of 274 mV at 100 mA cm. When coupling HER and OER by using NMO@NM/MO as both the cathode and anode, the alkaline electrolyzer delivers a current density of 10 mA cm at only 1.50 V as well as good robustness. The synergistic effect of the hetero-interface and the defect engineering endows the electrocatalyst with excellent bifunctional catalytic activity for HER and OER. This work may provide a route for rational design of heterostructure electrocatalysts with multiple active components.
尽管在过去十年中付出了巨大努力,但合理设计低成本、高效率的双功能电催化剂以实现工业水分解仍然是一项挑战。在此,我们通过水热和还原退火两步法合成了负载在NF上的镍钼纳米棒阵列催化剂(NMO@NM/MO)。NiMoO的部分还原诱导了富含氧空位的纳米棒上NiMo/MoO异质结构的结构重构和形成,这带来了足够的活性位点、大的比表面积和良好的界面电荷转移。得益于具有异质结构NiMo/MoO表面和富含缺陷的NiMoO核的独特核壳结构,所制备的电催化剂在100 mA cm下具有63 mV的超低过电位,析氢反应(HER)活性得到了极大提高(相比之下,NiMoO为314 mV)。密度泛函理论计算表明,NiMo/MoO异质结构的构建有效地加速了HO解离动力学,而有缺陷的NiMoO促进了H*的吸附/脱附。此外,该异质结构催化剂在100 mA cm下的析氧反应(OER)性能也很优异,过电位低至274 mV。当使用NMO@NM/MO作为阴极和阳极耦合HER和OER时,碱性电解槽在仅1.50 V的电压下就能提供10 mA cm的电流密度,并且具有良好的稳定性。异质界面和缺陷工程的协同效应赋予了该电催化剂优异的HER和OER双功能催化活性。这项工作可能为合理设计具有多种活性成分的异质结构电催化剂提供一条途径。