Suppr超能文献

利用位置布隆-惠勒变换(PBWT)算法中的并行化实现高效单倍型匹配与压缩。

Exploiting parallelization in positional Burrows-Wheeler transform (PBWT) algorithms for efficient haplotype matching and compression.

作者信息

Wertenbroek Rick, Xenarios Ioannis, Thoma Yann, Delaneau Olivier

机构信息

School of Engineering and Management Vaud (HEIG-VD), HES-SO University of Applied Sciences and Arts Western Switzerland, Yverdon-les-Bains 1401, Switzerland.

Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland.

出版信息

Bioinform Adv. 2023 Mar 2;3(1):vbad021. doi: 10.1093/bioadv/vbad021. eCollection 2023.

Abstract

SUMMARY

The positional Burrows-Wheeler transform (PBWT) data structure allows for efficient haplotype data matching and compression. Its performance makes it a powerful tool for bioinformatics. However, existing algorithms do not exploit parallelism due to inner dependencies. We introduce a new method to break the dependencies and show how to fully exploit modern multi-core processors.

AVAILABILITY AND IMPLEMENTATION

Source code and applications are available at https://github.com/rwk-unil/parallel_pbwt.

SUPPLEMENTARY INFORMATION

Supplementary data are available at online.

摘要

摘要

位置布罗-惠勒变换(PBWT)数据结构允许进行高效的单倍型数据匹配和压缩。其性能使其成为生物信息学的强大工具。然而,由于内部依赖性,现有算法未利用并行性。我们引入了一种新方法来打破依赖性,并展示了如何充分利用现代多核处理器。

可用性和实现

源代码和应用程序可在https://github.com/rwk-unil/parallel_pbwt获取。

补充信息

补充数据可在网上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44e9/10005600/0be95822d028/vbad021f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验