Wertenbroek Rick, Xenarios Ioannis, Thoma Yann, Delaneau Olivier
School of Engineering and Management Vaud (HEIG-VD), HES-SO University of Applied Sciences and Arts Western Switzerland, Yverdon-les-Bains 1401, Switzerland.
Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland.
Bioinform Adv. 2023 Mar 2;3(1):vbad021. doi: 10.1093/bioadv/vbad021. eCollection 2023.
The positional Burrows-Wheeler transform (PBWT) data structure allows for efficient haplotype data matching and compression. Its performance makes it a powerful tool for bioinformatics. However, existing algorithms do not exploit parallelism due to inner dependencies. We introduce a new method to break the dependencies and show how to fully exploit modern multi-core processors.
Source code and applications are available at https://github.com/rwk-unil/parallel_pbwt.
Supplementary data are available at online.
位置布罗-惠勒变换(PBWT)数据结构允许进行高效的单倍型数据匹配和压缩。其性能使其成为生物信息学的强大工具。然而,由于内部依赖性,现有算法未利用并行性。我们引入了一种新方法来打破依赖性,并展示了如何充分利用现代多核处理器。
源代码和应用程序可在https://github.com/rwk-unil/parallel_pbwt获取。
补充数据可在网上获取。