Suppr超能文献

利用位置布隆-惠勒变换(PBWT)算法中的并行化实现高效单倍型匹配与压缩。

Exploiting parallelization in positional Burrows-Wheeler transform (PBWT) algorithms for efficient haplotype matching and compression.

作者信息

Wertenbroek Rick, Xenarios Ioannis, Thoma Yann, Delaneau Olivier

机构信息

School of Engineering and Management Vaud (HEIG-VD), HES-SO University of Applied Sciences and Arts Western Switzerland, Yverdon-les-Bains 1401, Switzerland.

Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland.

出版信息

Bioinform Adv. 2023 Mar 2;3(1):vbad021. doi: 10.1093/bioadv/vbad021. eCollection 2023.

Abstract

SUMMARY

The positional Burrows-Wheeler transform (PBWT) data structure allows for efficient haplotype data matching and compression. Its performance makes it a powerful tool for bioinformatics. However, existing algorithms do not exploit parallelism due to inner dependencies. We introduce a new method to break the dependencies and show how to fully exploit modern multi-core processors.

AVAILABILITY AND IMPLEMENTATION

Source code and applications are available at https://github.com/rwk-unil/parallel_pbwt.

SUPPLEMENTARY INFORMATION

Supplementary data are available at online.

摘要

摘要

位置布罗-惠勒变换(PBWT)数据结构允许进行高效的单倍型数据匹配和压缩。其性能使其成为生物信息学的强大工具。然而,由于内部依赖性,现有算法未利用并行性。我们引入了一种新方法来打破依赖性,并展示了如何充分利用现代多核处理器。

可用性和实现

源代码和应用程序可在https://github.com/rwk-unil/parallel_pbwt获取。

补充信息

补充数据可在网上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44e9/10005600/0be95822d028/vbad021f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验