Suppr超能文献

一种保守的压力驱动机制,用于调节胞浆渗透压。

A conserved pressure-driven mechanism for regulating cytosolic osmolarity.

作者信息

Velle Katrina B, Garner Rikki M, Beckford Tatihana K, Weeda Makaela, Liu Chunzi, Kennard Andrew S, Edwards Marc, Fritz-Laylin Lillian K

机构信息

Department of Biology, University of Massachusetts Amherst, Amherst, MA.

Department of Systems Biology, Harvard Medical School, Boston, MA.

出版信息

bioRxiv. 2023 Mar 2:2023.03.01.529730. doi: 10.1101/2023.03.01.529730.

Abstract

Controlling intracellular osmolarity is essential to all cellular life. Cells that live in hypo-osmotic environments like freshwater must constantly battle water influx to avoid swelling until they burst. Many eukaryotic cells use contractile vacuoles to collect excess water from the cytosol and pump it out of the cell. Although contractile vacuoles are essential to many species, including important pathogens, the mechanisms that control their dynamics remain unclear. To identify basic principles governing contractile vacuole function, we here investigate the molecular mechanisms of two species with distinct vacuolar morphologies from different eukaryotic lineagesâ€"the discoban , and the amoebozoan slime mold . Using quantitative cell biology we find that, although these species respond differently to osmotic challenges, they both use actin for osmoregulation, as well as vacuolar-type proton pumps for filling contractile vacuoles. We also use analytical modeling to show that cytoplasmic pressure is sufficient to drive water out of contractile vacuoles in these species, similar to findings from the alveolate . Because these three lineages diverged well over a billion years ago, we propose that this represents an ancient eukaryotic mechanism of osmoregulation.

摘要

控制细胞内渗透压对所有细胞生命来说至关重要。生活在低渗环境(如淡水)中的细胞必须不断对抗水分涌入,以避免肿胀直至破裂。许多真核细胞利用收缩泡从细胞质中收集多余水分并将其泵出细胞。尽管收缩泡对包括重要病原体在内的许多物种至关重要,但其控制动态的机制仍不清楚。为了确定控制收缩泡功能的基本原理,我们在此研究来自不同真核生物谱系的具有不同液泡形态的两个物种——盘基网柄菌和变形虫黏菌的分子机制。通过定量细胞生物学方法,我们发现,尽管这些物种对渗透压挑战的反应不同,但它们都利用肌动蛋白进行渗透调节,以及利用液泡型质子泵来填充收缩泡。我们还通过分析模型表明,细胞质压力足以将这些物种收缩泡中的水排出,这与肺泡生物的研究结果类似。由于这三个谱系在十亿多年前就已分化,我们认为这代表了一种古老的真核生物渗透调节机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e0/10002747/8034983ab254/nihpp-2023.03.01.529730v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验