Shashaank N, Somayaji Mahalakshmi, Miotto Mattia, Mosharov Eugene V, Makowicz Emily A, Knowles David A, Ruocco Giancarlo, Sulzer David L
Department of Computer Science, Columbia University, New York, NY 10027, USA.
New York Genome Center, New York, NY 10013, USA.
PNAS Nexus. 2023 Feb 10;2(3):pgad044. doi: 10.1093/pnasnexus/pgad044. eCollection 2023 Mar.
Dopamine neurotransmission in the striatum is central to many normal and disease functions. Ventral midbrain dopamine neurons exhibit ongoing tonic firing that produces low extrasynaptic levels of dopamine below the detection of conventional extrasynaptic cyclic voltammetry (∼10-20 nanomolar), with superimposed bursts that can saturate the dopamine uptake transporter and produce transient micromolar concentrations. The bursts are known to lead to marked presynaptic plasticity via multiple mechanisms, but analysis methods for these kinetic parameters are limited. To provide a deeper understanding of the mechanics of the modulation of dopamine neurotransmission by physiological, genetic, and pharmacological means, we present three computational models of dopamine release with different levels of spatiotemporal complexity to analyze in vivo fast-scan cyclic voltammetry recordings from the dorsal striatum of mice. The models accurately fit to cyclic voltammetry data and provide estimates of presynaptic dopamine facilitation/depression kinetics and dopamine transporter reuptake kinetics, and we used the models to analyze the role of synuclein proteins in neurotransmission. The models' results support recent findings linking the presynaptic protein α-synuclein to the short-term facilitation and long-term depression of dopamine release, as well as reveal a new role for β-synuclein and/or γ-synuclein in the long-term regulation of dopamine reuptake.
纹状体中的多巴胺神经传递对许多正常和疾病功能至关重要。腹侧中脑多巴胺神经元表现出持续的紧张性放电,产生低于传统突触外循环伏安法检测水平(约10 - 20纳摩尔)的低突触外多巴胺水平,同时伴有叠加的爆发性放电,可使多巴胺摄取转运体饱和并产生瞬态微摩尔浓度。已知这些爆发性放电通过多种机制导致明显的突触前可塑性,但针对这些动力学参数的分析方法有限。为了更深入地理解通过生理、遗传和药理学手段调节多巴胺神经传递的机制,我们提出了三种具有不同时空复杂度水平的多巴胺释放计算模型,以分析来自小鼠背侧纹状体的体内快速扫描循环伏安法记录。这些模型准确拟合了循环伏安法数据,并提供了突触前多巴胺易化/抑制动力学和多巴胺转运体重摄取动力学的估计值,我们使用这些模型分析了突触核蛋白在神经传递中的作用。模型结果支持了最近将突触前蛋白α-突触核蛋白与多巴胺释放的短期易化和长期抑制联系起来的研究发现,同时揭示了β-突触核蛋白和/或γ-突触核蛋白在多巴胺重摄取长期调节中的新作用。