Suppr超能文献

基于监督机器学习的在不平衡数据集条件下从 P 波到 P 波间期变异性预测房扑机制。

Supervised Machine Learning Based Noninvasive Prediction of Atrial Flutter Mechanism from P-to-P Interval Variability under Imbalanced Dataset Conditions.

机构信息

Universiti Kuala Lumpur, British Malaysian Institute, Kuala Lumpur, Malaysia.

Islamic International University, Islamabad, Pakistan.

出版信息

Comput Intell Neurosci. 2023 Mar 1;2023:8162325. doi: 10.1155/2023/8162325. eCollection 2023.

Abstract

Atrial flutter (AFL) is a common arrhythmia with two significant mechanisms, namely, focal (FAFL) and macroreentry (MAFL). Discrimination of the AFL mechanism through noninvasive techniques can improve radiofrequency ablation efficacy. This study aims to differentiate the AFL mechanism using a 12-lead surface electrocardiogram. P-P interval series variability is hypothesized to be different in FAFL and MAFL and may be useful for discrimination. 12-lead ECG signals were collected from 46 patients with known AFL mechanisms. Features for a proposed classifier are extracted through descriptive statistics of the interval series. On the other hand, the class ratio of MAFL and FAFL was 41 : 5, respectively, which was highly imbalanced. To resolve this, different data augmentation techniques (SMOTE, modified-SMOTE, and smoothed-bootstrap) have been applied on the interval series to generate synthetic interval series and minimize imbalance. Modification is introduced in the classic SMOTE technique (modified-SMOTE) to properly produce data samples from the original distribution. The characteristics of modified-SMOTE are found closer to the original dataset than the other two techniques based on the four validation criteria. The performance of the proposed model has been evaluated by three linear classifiers, namely, linear discriminant analysis (LDA), logistic regression (LOG), and support vector machine (SVM). Filter and wrapper methods have been used for selecting relevant features. The best average performance was achieved at 400% augmentation of the FAFL interval series (90.24% sensitivity, 49.50% specificity, and 76.88% accuracy) in the LOG classifier. The variation of consecutive P-wave intervals has been shown as an effective concept that differentiates FAFL from MAFL through the 12-lead surface ECG.

摘要

心房颤动(AFL)是一种常见的心律失常,有两种重要的机制,即局灶性(FAFL)和大折返性(MAFL)。通过非侵入性技术对 AFL 机制进行区分可以提高射频消融的疗效。本研究旨在通过 12 导联体表心电图来区分 AFL 机制。假设 FAFL 和 MAFL 中的 P-P 间期序列变异性不同,这可能有助于区分。从已知 AFL 机制的 46 名患者中采集 12 导联心电图信号。通过间隔序列的描述性统计提取用于拟议分类器的特征。另一方面,MAFL 和 FAFL 的类比分别为 41∶5,这是非常不平衡的。为了解决这个问题,对间隔序列应用了不同的数据增强技术(SMOTE、修正 SMOTE 和平滑引导),以生成合成间隔序列并最小化不平衡。在经典 SMOTE 技术(修正 SMOTE)中引入了修改,以从原始分布中正确生成数据样本。基于四个验证标准,修正 SMOTE 的特征被发现比其他两种技术更接近原始数据集。通过三个线性分类器(线性判别分析(LDA)、逻辑回归(LOG)和支持向量机(SVM))评估了所提出模型的性能。使用过滤器和包装器方法选择相关特征。在 LOG 分类器中,对 FAFL 间隔序列进行 400%增强时,获得了最佳的平均性能(90.24%的敏感性、49.50%的特异性和 76.88%的准确性)。通过 12 导联体表心电图,连续 P 波间隔的变化已被证明是区分 FAFL 和 MAFL 的有效概念。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed82/9995187/db0fbe88f959/CIN2023-8162325.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验