European Laboratory for Non Linear Spectroscopy (LENS), via N. Carrara 1, Sesto Fiorentino, 50019, Italy.
Department of Physics and Astronomy, University of Florence, via G. Sansone 1, Sesto Fiorentino, 50019, Italy.
Macromol Rapid Commun. 2023 May;44(9):e2200958. doi: 10.1002/marc.202200958. Epub 2023 Mar 25.
Phase behavior modulation of liquid crystalline molecules can be addressed by structural modification at molecular level. Starting from a rigid rod-like core reduction of the symmetry or increase of the steric hindrance by different substituents generally reduces the clearing temperature. Similar approaches can be explored to modulate the properties of liquid crystalline networks (LCNs)-shape-changing materials employed as actuators in many fields. Depending on the application, the polymer properties have to be adjusted in terms of force developed under stimuli, kinetics of actuation, elasticity, and resistance to specific loads. In this work, the crosslinker modification at molecular level is explored towards the optimization of LCN properties as light-responsive artificial muscles. The synthesis and characterization of photopolymerizable crosslinkers, bearing different lateral groups on the aromatic core is reported. Such molecules are able to strongly modulate the material mechanical properties, such as kinetics and maximum tension under light actuation, opening up to interesting materials for biomedical applications.
通过在分子水平上进行结构修饰,可以调节液晶分子的相行为。从刚性棒状核心开始,通过不同取代基降低对称性或增加空间位阻,通常会降低清亮点。类似的方法也可以用来调节液晶网络(LCN)的性质——作为许多领域中致动器的形状变化材料。根据应用的不同,必须根据刺激下产生的力、致动的动力学、弹性和对特定负载的阻力来调整聚合物的性质。在这项工作中,通过分子水平的交联剂修饰来优化 LCN 作为光响应人工肌肉的性能。报道了带有不同芳核侧基的光聚合交联剂的合成和表征。这些分子能够强烈调节材料的机械性能,例如在光致动下的动力学和最大张力,为生物医学应用开辟了有趣的材料。