Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
J Am Chem Soc. 2023 Mar 22;145(11):6546-6553. doi: 10.1021/jacs.3c00827. Epub 2023 Mar 13.
Assembling nanoparticles (NPs) into well-defined superstructures can lead to emergent collective properties that depend on their 3-D structural arrangement. Peptide conjugate molecules designed to both bind to NP surfaces and direct NP assembly have proven useful for constructing NP superstructures, and atomic- and molecular-level alterations to these conjugates have been shown to manifest in observable changes to nanoscale structure and properties. The divalent peptide conjugate, C-(PEP) (PEP = AYSSGAPPMPPF), directs the formation of one-dimensional helical Au NP superstructures. This study examines how variation of the ninth amino acid residue (M), which is known to be a key Au anchoring residue, affects the structure of the helical assemblies. A series of conjugates of differential Au binding affinities based on variation of the ninth residue were designed, and Replica Exchange with Solute Tempering (REST) Molecular Dynamics simulations of the peptides on an Au(111) surface were performed to determine the approximate surface contact and to assign a binding score for each new peptide. A helical structure transition from double helices to single helices is observed as the peptide binding affinity to the Au(111) surface decreases. Accompanying this distinct structural transition is the emergence of a plasmonic chiroptical signal. REST-MD simulations were also used to predict new peptide conjugate molecules that would preferentially direct the formation of single-helical AuNP superstructures. Significantly, these findings demonstrate how small modifications to peptide precursors can be leveraged to precisely direct inorganic NP structure and assembly at the nano- and microscale, further expanding and enriching the peptide-based molecular toolkit for controlling NP superstructure assembly and properties.
将纳米粒子 (NPs) 组装成具有明确结构的超结构可以导致依赖于其 3-D 结构排列的新兴集体性质。已经证明,设计用于结合 NP 表面并指导 NP 组装的肽缀合物分子对于构建 NP 超结构非常有用,并且对这些缀合物进行原子和分子水平的改变已经显示出对纳米级结构和性质的可观察到的变化。二价肽缀合物 C-(PEP)(PEP = AYSSGAPPMPPF)指导一维螺旋 Au NP 超结构的形成。本研究检查了第九个氨基酸残基(M)的变化如何影响螺旋组装的结构,已知 M 是关键的 Au 锚定残基。设计了一系列具有不同 Au 结合亲和力的缀合物,基于第九个残基的变化,在 Au(111)表面上进行 Replica Exchange with Solute Tempering (REST) 分子动力学模拟,以确定近似表面接触,并为每个新肽分配一个结合分数。当肽对 Au(111)表面的结合亲和力降低时,观察到从双链到单链的螺旋结构转变。与这种独特的结构转变相伴的是手性等离子体光学信号的出现。REST-MD 模拟还用于预测新的肽缀合物分子,这些分子将优先指导单螺旋 AuNP 超结构的形成。值得注意的是,这些发现表明如何利用对肽前体的微小修饰来精确地指导无机 NP 的结构和组装在纳米和微米尺度上,进一步扩展和丰富了基于肽的分子工具包,用于控制 NP 超结构组装和性质。