Wang Yuhang, Rastogi Dewansh, Malek Kotiba, Sun Jiayue, Asa-Awuku Akua, Woehl Taylor J
Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, Maryland 20742, United States.
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742, United States.
J Phys Chem A. 2023 Mar 23;127(11):2545-2553. doi: 10.1021/acs.jpca.2c08187. Epub 2023 Mar 13.
Understanding the nanoscale water condensation dynamics in strong electric fields is important for improving the atmospheric modeling of cloud dynamics and emerging technologies utilizing electric fields for direct air moisture capture. Here, we use vapor-phase transmission electron microscopy (VPTEM) to directly image nanoscale condensation dynamics of sessile water droplets in electric fields. VPTEM imaging of saturated water vapor stimulated condensation of sessile water nanodroplets that grew to a size of ∼500 nm before evaporating over a time scale of a minute. Simulations showed that electron beam charging of the silicon nitride microfluidic channel windows generated electric fields of ∼10 V/m, which depressed the water vapor pressure and effected rapid nucleation of nanosized liquid water droplets. A mass balance model showed that droplet growth was consistent with electric field-induced condensation, while droplet evaporation was consistent with radiolysis-induced evaporation conversion of water to hydrogen gas. The model quantified several electron beam-sample interactions and vapor transport properties, showed that electron beam heating was insignificant, and demonstrated that literature values significantly underestimated radiolytic hydrogen production and overestimated water vapor diffusivity. This work demonstrates a method for investigating water condensation in strong electric fields and under supersaturated conditions, which is relevant to vapor-liquid equilibrium in the troposphere. While this work identifies several electron beam-sample interactions that impact condensation dynamics, quantification of these phenomena here is expected to enable delineating these artifacts from the physics of interest and accounting for them when imaging more complex vapor-liquid equilibrium phenomena with VPTEM.
了解强电场中的纳米级水凝结动力学对于改进云动力学的大气建模以及利用电场直接捕获空气中水分的新兴技术至关重要。在此,我们使用气相透射电子显微镜(VPTEM)直接成像电场中静态水滴的纳米级凝结动力学。对饱和水蒸气进行VPTEM成像,刺激了静态水纳米液滴的凝结,这些液滴在一分钟的时间尺度内蒸发之前生长到约500 nm的大小。模拟表明,氮化硅微流体通道窗口的电子束充电产生了约10 V/m的电场,这降低了水蒸气压力并导致纳米级液态水滴的快速成核。质量平衡模型表明,液滴生长与电场诱导的凝结一致,而液滴蒸发与辐射分解诱导的水蒸发转化为氢气一致。该模型量化了几种电子束与样品的相互作用以及气相传输特性,表明电子束加热并不显著,并证明文献值显著低估了辐射分解产生的氢气量且高估了水蒸气扩散率。这项工作展示了一种在强电场和过饱和条件下研究水凝结的方法,这与对流层中的气液平衡相关。虽然这项工作确定了几种影响凝结动力学的电子束与样品的相互作用,但预计在此对这些现象进行量化将能够将这些假象与感兴趣的物理现象区分开来,并在使用VPTEM对更复杂的气液平衡现象进行成像时考虑到它们。