Zhang Yuefeng, Yu Zixun, She Fangxin, Wei Li, Zeng Zhiyuan, Li Hao
Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China.
Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan; School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia.
J Colloid Interface Sci. 2023 Jun 15;640:983-989. doi: 10.1016/j.jcis.2023.03.033. Epub 2023 Mar 8.
Under electrocatalytic conditions, the state of a catalyst surface (e.g., adsorbate coverage) can be very different from a pristine form due to the existing conversion equilibrium between water and H- and O-containing adsorbates. Dismissing the analysis of the catalyst surface state under operating conditionsmay lead to misleading guidelines for experiments. Given that confirming the actual active site of the catalyst under operating conditions is indispensable to providing practical guidance for experiments, herein, we analyzed the relations between the Gibbs free energy and the potential of a new type of molecular metal-nitrogen-carbon (MNC) dual-atom catalysts (DACs) with a unique 5 N-coordination environment, by spin-polarized density functional theory (DFT) and surface Pourbaix diagram calculations. Analyzing the derived surface Pourbaix diagrams, we screened out three catalysts, N-Ni-Ni-N, N-Co-Ni-N, and N-Ni-Co-N, to further study the activity of nitrogen reduction reaction (NRR). The results display that N-Co-Ni-N is a promising NRR catalyst with a relatively low ΔG of 0.49 eV and slow kinetics of the competing hydrogen evolution. This work proposes a new strategy to guide DAC experiments more precisely: the analysis of the surface occupancy state of the catalysts under electrochemical conditions should be performed before activity analysis.
在电催化条件下,由于水与含氢和含氧吸附质之间存在转化平衡,催化剂表面的状态(如吸附质覆盖率)可能与原始状态有很大不同。忽略对运行条件下催化剂表面状态的分析可能会给实验带来误导性的指导方针。鉴于确定运行条件下催化剂的实际活性位点对于为实验提供实际指导不可或缺,在此,我们通过自旋极化密度泛函理论(DFT)和表面Pourbaix图计算,分析了具有独特5N配位环境的新型分子金属 - 氮 - 碳(MNC)双原子催化剂(DACs)的吉布斯自由能与电位之间的关系。通过分析推导得到的表面Pourbaix图,我们筛选出三种催化剂,即N - Ni - Ni - N、N - Co - Ni - N和N - Ni - Co - N,以进一步研究氮还原反应(NRR)的活性。结果表明,N - Co - Ni - N是一种有前景的NRR催化剂,其ΔG相对较低,为0.49 eV,且析氢竞争动力学较慢。这项工作提出了一种更精确地指导DAC实验的新策略:在进行活性分析之前,应先对电化学条件下催化剂的表面占据状态进行分析。