Joshi Prasad Ramesh, Tsuge Masashi, Tseng Chih-Yu, Lee Yuan-Pern
Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.
Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan.
Phys Chem Chem Phys. 2023 May 3;25(17):11934-11950. doi: 10.1039/d3cp00246b.
Protonated polycyclic aromatic nitrogen heterocycles (HPANH) are prospective candidates that may contribute to interstellar unidentified infrared (UIR) emission bands because protonation enhances the relative intensities of the bands near 6.2, 7.7 and 8.6 μm, and the presence of the N atom induces a blue shift of the ring-stretching modes so that the spectra of HPANH match better with the 6.2 μm feature in class-A UIR spectra. We report the infrared (IR) spectra of protonated isoquinoline (the 2-isoquinolinium cation, iso-CHNH), its neutral counterpart (the 2-isoquinolinyl radical, iso-CHNH), and another mono-hydrogenated product (the 6-isoquinolinyl radical, 6-iso-HCHN), produced on the electron-bombardment of a mixture of isoquinoline (iso-CHN) with excess -hydrogen (-H) during matrix deposition at 3.2 K. To generate additional isomers of hydrogenated isoquinoline, we irradiated iso-CHN/Cl/-H matrices at 365 nm to generate Cl atoms, followed by IR irradiation to generate H atoms Cl + H ( = 1) → HCl + H; the H atoms thus generated reacted with iso-CHN. In addition to iso-CHNH and 6-iso-HCHN observed in the electron-bombardment experiments, we identified six additional hydrogenated isoquinoline species, 1-, 3-, 4-, 5-, 7- and 8-iso-HCHN, their IR spectra; hydrogenation on the N atom and all available carbon atoms except for the two sharing carbon atoms on the fused ring was observed. Spectral groupings were achieved according to their behaviors after maintenance of the matrix in darkness and on secondary photolysis at various wavelengths. The assignments were supported comparison of the experimental results with the vibrational wavenumbers and IR intensities of possible isomers predicted using the B3LYP/6-311++G(d,p) method. The implications in the identification of the UIR band are discussed.
质子化多环芳族氮杂环(HPANH)是可能有助于星际未识别红外(UIR)发射带的潜在候选物,因为质子化增强了6.2、7.7和8.6μm附近波段的相对强度,并且N原子的存在会引起环拉伸模式的蓝移,从而使HPANH的光谱与A类UIR光谱中的6.2μm特征更好地匹配。我们报告了质子化异喹啉(2-异喹啉鎓阳离子,iso-CHNH)、其中性对应物(2-异喹啉基自由基,iso-CHNH)以及另一种单氢化产物(6-异喹啉基自由基,6-iso-HCHN)的红外(IR)光谱,这些产物是在3.2K的基质沉积过程中,通过电子轰击异喹啉(iso-CHN)与过量氢气(-H)的混合物产生的。为了生成氢化异喹啉的其他异构体,我们在365nm波长下照射iso-CHN/Cl/-H基质以生成Cl原子,随后进行红外照射以生成H原子 Cl + H( = 1)→HCl + H;由此产生的H原子与iso-CHN发生反应。除了在电子轰击实验中观察到的iso-CHNH和6-iso-HCHN外,我们还鉴定出另外六种氢化异喹啉物种,即1-、3-、4-、5-、7-和8-iso-HCHN,并记录了它们的红外光谱;观察到N原子以及稠环上除两个共享碳原子之外的所有可用碳原子上的氢化反应。根据基质在黑暗中保存以及在不同波长下二次光解后的行为实现了光谱分组。通过将实验结果与使用B3LYP/6-311++G(d,p)方法预测的可能异构体的振动波数和红外强度进行比较,支持了这些归属。文中讨论了其在UIR波段识别中的意义。