Suppr超能文献

细针抽吸样本的综合基因分析可改善甲状腺癌的淋巴结转移风险分层。

Integrated gene profiling of fine-needle aspiration sample improves lymph node metastasis risk stratification for thyroid cancer.

机构信息

Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.

出版信息

Cancer Med. 2023 May;12(9):10385-10392. doi: 10.1002/cam4.5770. Epub 2023 Mar 14.

Abstract

BACKGROUND

Lymph node metastasis risk stratification is crucial for the surgical decision-making of thyroid cancer. This study investigated whether the integrated gene profiling (combining expression, SNV, fusion) of Fine-Needle Aspiration (FNA) samples can improve the prediction of lymph node metastasis in patients with papillary thyroid cancer.

METHODS

In this retrospective cohort study, patients with papillary thyroid cancer who went through thyroidectomy and central lymph node dissection were included. Multi-omics data of FNA samples were assessed by an integrated array. To predict lymph node metastasis, we built models using gene expressions or mutations (SNV and fusion) only and an Integrated Risk Stratification (IRS) model combining genetic and clinical information. Blinded histopathology served as the reference standard. ROC curve and decision curve analysis was applied to evaluate the predictive models.

RESULTS

One hundred and thirty two patients with pathologically confirmed papillary thyroid cancer were included between 2016-2017. The IRS model demonstrated greater performance [AUC = 0.87 (0.80-0.94)] than either expression classifier [AUC = 0.67 (0.61-0.74)], mutation classifier [AUC = 0.61 (0.55-0.67)] or TIRADS score [AUC = 0.68 (0.62-0.74)] with statistical significance (p < 0.001), and the IRS model had similar predictive performance in large nodule [>1 cm, AUC = 0.88 (0.79-0.97)] and small nodule [≤1 cm, AUC = 0.84 (0.74-0.93)] subgroups. The genetic risk factor showed independent predictive value (OR = 10.3, 95% CI:1.1-105.3) of lymph node metastasis in addition to the preoperative clinical information, including TIRADS grade, age, and nodule size.

CONCLUSION

The integrated gene profiling of FNA samples and the IRS model developed by the machine-learning method significantly improve the risk stratification of thyroid cancer, thus helping make wise decisions and reducing unnecessary extensive surgeries.

摘要

背景

淋巴结转移风险分层对于甲状腺癌的手术决策至关重要。本研究旨在探讨细针穿刺(Fine-Needle Aspiration,FNA)样本的综合基因谱(结合表达、单核苷酸变异、融合)是否能提高甲状腺乳头状癌患者淋巴结转移的预测能力。

方法

本回顾性队列研究纳入了 2016-2017 年间接受甲状腺切除术和中央淋巴结清扫术的甲状腺乳头状癌患者。通过集成阵列评估 FNA 样本的多组学数据。为了预测淋巴结转移,我们仅使用基因表达或突变(单核苷酸变异和融合)构建模型,以及使用综合风险分层(Integrated Risk Stratification,IRS)模型结合遗传和临床信息构建模型。盲法组织病理学作为参考标准。ROC 曲线和决策曲线分析用于评估预测模型。

结果

共纳入了 132 例经病理证实的甲状腺乳头状癌患者,研究时间为 2016-2017 年。IRS 模型的表现优于表达分类器 [AUC=0.67(0.61-0.74)]、突变分类器 [AUC=0.61(0.55-0.67)]或 TIRADS 评分 [AUC=0.68(0.62-0.74)],差异具有统计学意义(p<0.001),且 IRS 模型在大结节[>1cm,AUC=0.88(0.79-0.97)]和小结节[≤1cm,AUC=0.84(0.74-0.93)]亚组中的预测性能相似。遗传风险因素除了术前临床信息(包括 TIRADS 分级、年龄和结节大小)外,还具有淋巴结转移的独立预测价值(OR=10.3,95%CI:1.1-105.3)。

结论

FNA 样本的综合基因谱和机器学习方法开发的 IRS 模型显著改善了甲状腺癌的风险分层,从而有助于做出明智的决策并减少不必要的广泛手术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbb3/10225186/08fb67a5bbc2/CAM4-12-10385-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验