Suppr超能文献

海鲜中组胺形成菌的检测、鉴定和灭活:综述

Detection, Identification, and Inactivation of Histamine-forming Bacteria in Seafood: A Mini-review.

机构信息

Department of Biology, College of Arts and Sciences, Our Lady of Fatima University, Quezon City 1118, Philippines.

Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.

出版信息

J Food Prot. 2023 Mar;86(3):100049. doi: 10.1016/j.jfp.2023.100049. Epub 2023 Jan 27.

Abstract

Seafood is one of the essential sources of nutrients for the human diet. However, they can be subject to contamination and can cause foodborne illnesses, including scombroid fish poisoning caused by histamine. Many microorganisms can produce enzymes that eventually decompose endogenous histidine to histamine in postmortem fish muscles and tissues. One of these is histamine-forming bacteria (HFB), primarily found in the gills, gut, and skin of fishes. Previous studies linked a plethora of Gram-negative HFB including Morganella spp. and Photobacterium spp. to scombroid fish poisoning from many types of seafood, especially the Scombridae family. These bacteria possess the hdc gene to produce histidine decarboxylase enzyme. It was reported that Gram-negative HFB produced 6345 ppm in tuna and 1223 ppm in Spanish mackerel. Interestingly, Gram-positive HFB have been isolated in the seafood samples with lower histamine levels. It suggests that Gram-negative HFB are the major contributor to the accumulation of histamine in seafood. Several analytical methods are available to detect and identify HFB and their histamine metabolites from seafood substrates. Rapid test kits can be used in food production settings for early detection of histamine to avoid food intoxication. Furthermore, high hydrostatic pressure and irradiation treatment could prevent the proliferation of HFB and inactivate the existing histidine decarboxylase (HDC) activity. As demonstrated in different seafood model systems, the HDC activity was deactivated at a maximum high hydrostatic pressure level of 400 MPa. The complete inactivation of HFB was achieved by gamma irradiation at a dose of 4.0 kGy. Other postharvest treatments, like enzymatic degradation and electrolyzed oxidizing water, were studied as sustainable methods for bacterial growth prevention and enzyme inactivation. However, other HFB react differently to these treatment conditions, and further studies are recommended.

摘要

海鲜是人类饮食中营养的重要来源之一。然而,它们可能受到污染,并导致食源性疾病,包括组胺引起的鲭鱼中毒。许多微生物可以产生酶,最终将死后鱼肌肉和组织中的内源性组氨酸分解为组胺。其中一种是组胺形成细菌(HFB),主要存在于鱼类的鳃、肠道和皮肤中。以前的研究将包括 Morganella spp. 和 Photobacterium spp. 在内的大量革兰氏阴性 HFB 与多种类型的海鲜,特别是鲭鱼科鱼类的鲭鱼中毒联系起来。这些细菌拥有 hdc 基因来产生组氨酸脱羧酶酶。据报道,革兰氏阴性 HFB 在金枪鱼中产生 6345ppm,在西班牙鲭鱼中产生 1223ppm。有趣的是,在组胺水平较低的海鲜样本中分离出了革兰氏阳性 HFB。这表明革兰氏阴性 HFB 是海鲜中组胺积累的主要贡献者。有几种分析方法可用于从海鲜基质中检测和鉴定 HFB 及其组胺代谢物。快速检测试剂盒可用于食品生产环境,以便早期检测组胺,避免食物中毒。此外,高压处理和辐照处理可以防止 HFB 的增殖并使现有的组氨酸脱羧酶(HDC)失活。在不同的海鲜模型系统中证明,在最大的 400MPa 高压水平下,HDC 活性失活。通过 4.0kGy 的伽马辐照实现了 HFB 的完全失活。其他收获后处理,如酶降解和电解氧化水,被研究为防止细菌生长和酶失活的可持续方法。然而,其他 HFB 对这些处理条件的反应不同,建议进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验