Suppr超能文献

确定镍和钴氧化物催化剂表面特定的哈伯德修正并识别关键吸附质。

Determining surface-specific Hubbard- corrections and identifying key adsorbates on nickel and cobalt oxide catalyst surfaces.

作者信息

Jiang Shang, Mushrif Samir H

机构信息

Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street Northwest, Edmonton, Alberta T6G 1H9, Canada.

出版信息

Phys Chem Chem Phys. 2023 Mar 22;25(12):8903-8912. doi: 10.1039/d2cp04814k.

Abstract

NiO is a popular transition metal oxide (TMO) with high thermal and chemical stability and CoO is a relatively more reducible TMO due to weaker metal-oxygen bonds. Both are often used as catalysts in a variety of chemical transformations. Density functional theory (DFT) and X-ray photoelectron spectroscopy (XPS) are used to investigate catalysis on TMO surfaces, yet both techniques have their own limitations. The accuracy of DFT highly depends on the choice of Hubbard correction. The bulk-property optimized value of 5.3 eV for NiO and different values for CoO, without any consensus, are often used in the literature to simulate surface catalysis. However, values optimized using bulk properties often fail to reproduce surface-adsorbate interactions on TMOs. Similarly, there exists arbitrariness in assigning observed XPS shifts to different surface species on these metal oxides. Hence, a synergistic application of XPS and DFT+ is implemented to determine the surface specific values for NiO and CoO, and to identify adsorbed surface moieties corresponding to experimentally observed XPS shifts. For the NiO (100) surface, the value of ∼2 eV is able to reproduce the experimentally observed XPS O1s core level binding energy shifts correctly, instead of the bulk property optimized and commonly used value of 5.3 eV. Using this surface specific value of 2 eV, the experimentally observed XPS shifts are assigned. Similarly, for CoO (100) surface, ∼3 eV of value could successfully predict the experimentally observed XPS shifts and corresponding adsorbates. The surface adsorbates and configurations suggested in this work will help analyze experimental XPS data and the surface specific values will ensure accurate predictions of adsorption and reaction energetics on these catalysts.

摘要

氧化镍(NiO)是一种常见的过渡金属氧化物(TMO),具有高的热稳定性和化学稳定性,而氧化钴(CoO)由于其较弱的金属-氧键,是一种相对更易还原的TMO。两者都常用于各种化学转化反应中的催化剂。密度泛函理论(DFT)和X射线光电子能谱(XPS)被用于研究TMO表面的催化作用,但这两种技术都有其自身的局限性。DFT的准确性高度依赖于哈伯德校正的选择。文献中通常使用氧化镍的体相性质优化值5.3 eV以及氧化钴的不同值(无统一共识)来模拟表面催化。然而,使用体相性质优化的值往往无法重现TMO上的表面-吸附质相互作用。同样,在将观察到的XPS位移归因于这些金属氧化物上的不同表面物种时存在随意性。因此,实施XPS和DFT + 的协同应用,以确定氧化镍和氧化钴的表面特定值,并识别与实验观察到的XPS位移相对应的吸附表面部分。对于氧化镍(100)表面,约2 eV的值能够正确重现实验观察到的XPS O1s核心能级结合能位移,而不是体相性质优化并常用的5.3 eV值。使用这个2 eV的表面特定值,可以对实验观察到的XPS位移进行归因。同样,对于氧化钴(100)表面,约3 eV的值能够成功预测实验观察到的XPS位移和相应的吸附质。这项工作中提出的表面吸附质和构型将有助于分析实验XPS数据,而表面特定值将确保准确预测这些催化剂上的吸附和反应能量学。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验