Suppr超能文献

视障用户在可教对象识别器中访问其训练图像。

Blind Users Accessing Their Training Images in Teachable Object Recognizers.

作者信息

Hong Jonggi, Gandhi Jaina, Mensah Ernest Essuah, Zeraati Farnaz Zamiri, Jarjue Ebrima Haddy, Lee Kyungjun, Kacorri Hernisa

机构信息

Smith-Kettlewell Eye Research Institute, San Francisco, United States.

University of Maryland, College Park, United States.

出版信息

ASSETS. 2022 Oct;2022. doi: 10.1145/3517428.3544824. Epub 2022 Oct 22.

Abstract

Teachable object recognizers provide a solution for a very practical need for blind people - instance level object recognition. They assume one can visually inspect the photos they provide for training, a critical and inaccessible step for those who are blind. In this work, we engineer data descriptors that address this challenge. They indicate in real time whether the object in the photo is cropped or too small, a hand is included, the photos is blurred, and how much photos vary from each other. Our descriptors are built into open source testbed iOS app, called MYCam. In a remote user study in ( = 12) blind participants' homes, we show how descriptors, even when error-prone, support experimentation and have a positive impact in the quality of training set that can translate to model performance though this gain is not uniform. Participants found the app simple to use indicating that they could effectively train it and that the descriptors were useful. However, many found the training being tedious, opening discussions around the need for balance between information, time, and cognitive load.

摘要

可教对象识别器为盲人的一项非常实际的需求——实例级对象识别提供了一种解决方案。它们假定人们可以目视检查用于训练的照片,而这对于盲人来说是关键且无法做到的一步。在这项工作中,我们设计了能够应对这一挑战的数据描述符。它们能实时指出照片中的对象是否被裁剪或过小、是否包含手部、照片是否模糊以及照片之间的差异程度。我们的描述符被集成到一款名为MYCam的开源测试版iOS应用程序中。在一项针对12名盲人参与者家中进行的远程用户研究中,我们展示了描述符即便容易出错,也能支持实验,并对训练集的质量产生积极影响,尽管这种提升并不一致,但这可以转化为模型性能。参与者发现该应用程序易于使用,表明他们可以有效地对其进行训练,并且描述符很有用。然而,许多人发现训练很乏味,引发了关于在信息、时间和认知负荷之间取得平衡的必要性的讨论。

相似文献

3
Hands Holding Clues for Object Recognition in Teachable Machines.手中线索助力可教机器进行物体识别。
Proc SIGCHI Conf Hum Factor Comput Syst. 2019 May;2019. doi: 10.1145/3290605.3300566.
6
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
9
The Last Meter: Blind Visual Guidance to a Target.最后一米:对目标的盲目视觉引导。
Proc SIGCHI Conf Hum Factor Comput Syst. 2014 Apr-May;2014:3113-3122. doi: 10.1145/2556288.2557328.

本文引用的文献

2
Exploring Machine Teaching with Children.与儿童一起探索机器教学。
Proc IEEE Symp Vis Lang Hum Centric Comput. 2021 Oct;2021. doi: 10.1109/vl/hcc51201.2021.9576171. Epub 2021 Oct 29.
4
Crosswalk Guidance System for the Blind.盲人人行横道引导系统
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3327-3330. doi: 10.1109/EMBC44109.2020.9176623.
7
Hands Holding Clues for Object Recognition in Teachable Machines.手中线索助力可教机器进行物体识别。
Proc SIGCHI Conf Hum Factor Comput Syst. 2019 May;2019. doi: 10.1145/3290605.3300566.
10
Visual object understanding.视觉对象理解
Nat Rev Neurosci. 2004 Apr;5(4):291-303. doi: 10.1038/nrn1364.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验