Department of Medical Ultrasound, Department of Gastrointestinal Surgery, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning 530021, Guangxi, P.R. China.
Central Laboratory, Department of Medical Ultrasound, and Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University. No. 301 Yanchangzhong Road, Shanghai 200072, P.R. China.
ACS Nano. 2023 Mar 28;17(6):5503-5516. doi: 10.1021/acsnano.2c10845. Epub 2023 Mar 14.
Incomplete microwave ablation (iMWA) caused by uncontrollable heat diffusion enhances the immunosuppressive tumor microenvironment (ITM), consequently disabling the prevalent immune checkpoint blockade-combined immunotherapy against tumor recurrence. Herein, we successfully constructed an intratumorally synthesized Au bioreactor to disperse heat in thermally sensitive hydrogel-filled tumors and improve the energy utilization efficiency, which magnified the effective ablation zone (EAZ), counteracted iMWA, and simultaneously established and enhanced multiple biological process-regulated microwavegenetics. More significantly, we identified the extracellular matrix (ECM) viscosity as a general immune escape "target". After remodeling ECM, including ECM ingredients and cell adhesion molecules, this physical target was blocked by viscosity reprogramming, furnishing an effective tool to regulate the viscosity target. Thereby, such in situ Au bioreactor-enlarged EAZ and enhanced microwavegenetics reversed the immune-desert tumor microenvironment, mitigated ITM, secreted immune cell-attracting chemokines, recruited and polarized various immune cells, and activated or reactivated them like dendritic cells, natural killing cells, M1-type macrophages, and effector CD8+ or CAR-T cells. Contributed by these multiple actions, the in situ oncolytic Au bioreactors evoked CAR-T immunotherapy to acquire a considerably increased inhibition effect against tumor progression and recurrence after iMWA, thus providing a general method to enhance iMWA and CAR-T immunotherapy.
由于不可控的热扩散导致的不完全微波消融(iMWA)增强了免疫抑制性肿瘤微环境(ITM),从而使普遍存在的免疫检查点阻断联合免疫疗法无法对抗肿瘤复发。在这里,我们成功构建了一个肿瘤内合成的 Au 生物反应器,以在热敏性水凝胶填充的肿瘤中分散热量并提高能量利用效率,从而扩大有效消融区(EAZ),抵消 iMWA,同时建立和增强多个受生物学过程调节的微波遗传学。更重要的是,我们确定细胞外基质(ECM)粘度是一种普遍的免疫逃逸“靶标”。在重塑 ECM 后,包括 ECM 成分和细胞粘附分子,通过粘度重编程阻断了这种物理靶标,提供了一种有效的工具来调节粘度靶标。因此,这种原位 Au 生物反应器扩大的 EAZ 和增强的微波遗传学逆转了免疫荒漠肿瘤微环境,减轻了 ITM,分泌了吸引免疫细胞的趋化因子,招募和极化了各种免疫细胞,并像树突状细胞、自然杀伤细胞、M1 型巨噬细胞和效应 CD8+或 CAR-T 细胞一样激活或重新激活它们。通过这些多种作用,原位溶瘤 Au 生物反应器引发了 CAR-T 免疫疗法,对 iMWA 后肿瘤进展和复发获得了显著增加的抑制效果,从而为增强 iMWA 和 CAR-T 免疫疗法提供了一种通用方法。