Suppr超能文献

用于定义远端血管树中内环境稳态的多尺度框架:在肺循环中的应用

A multiscale framework for defining homeostasis in distal vascular trees: applications to the pulmonary circulation.

作者信息

Gharahi Hamidreza, Filonova Vasilina, Mullagura Haritha N, Nama Nitesh, Baek Seungik, Figueroa C Alberto

机构信息

Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA.

Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA.

出版信息

Biomech Model Mechanobiol. 2023 Jun;22(3):971-986. doi: 10.1007/s10237-023-01693-7. Epub 2023 Mar 14.

Abstract

Pulmonary arteries constitute a low-pressure network of vessels, often characterized as a bifurcating tree with heterogeneous vessel mechanics. Understanding the vascular complexity and establishing homeostasis is important to study diseases such as pulmonary arterial hypertension (PAH). The onset and early progression of PAH can be traced to changes in the morphometry and structure of the distal vasculature. Coupling hemodynamics with vessel wall growth and remodeling (G&R) is crucial for understanding pathology at distal vasculature. Accordingly, the goal of this study is to provide a multiscale modeling framework that embeds the essential features of arterial wall constituents coupled with the hemodynamics within an arterial network characterized by an extension of Murray's law. This framework will be used to establish the homeostatic baseline characteristics of a pulmonary arterial tree, including important parameters such as vessel radius, wall thickness and shear stress. To define the vascular homeostasis and hemodynamics in the tree, we consider two timescales: a cardiac cycle and a longer period of vascular adaptations. An iterative homeostatic optimization, which integrates a metabolic cost function minimization, the stress equilibrium, and hemodynamics, is performed at the slow timescale. In the fast timescale, the pulsatile blood flow dynamics is described by a Womersley's deformable wall analytical solution. Illustrative examples for symmetric and asymmetric trees are presented that provide baseline characteristics for the normal pulmonary arterial vasculature. The results are compared with diverse literature data on morphometry, structure, and mechanics of pulmonary arteries. The developed framework demonstrates a potential for advanced parametric studies and future G&R and hemodynamics modeling of PAH.

摘要

肺动脉构成一个低压血管网络,通常被描述为具有异质血管力学特性的分叉树状结构。了解血管复杂性并建立内稳态对于研究诸如肺动脉高压(PAH)等疾病很重要。PAH的发病和早期进展可追溯到远端脉管系统形态学和结构的变化。将血流动力学与血管壁生长和重塑(G&R)相结合对于理解远端脉管系统的病理学至关重要。因此,本研究的目标是提供一个多尺度建模框架,该框架将动脉壁成分的基本特征与以默里定律扩展为特征的动脉网络内的血流动力学相结合。该框架将用于建立肺动脉树的内稳态基线特征,包括诸如血管半径、壁厚和剪应力等重要参数。为了定义树状结构中的血管内稳态和血流动力学,我们考虑两个时间尺度:心动周期和更长的血管适应期。在慢时间尺度上进行迭代内稳态优化,该优化整合了代谢成本函数最小化、应力平衡和血流动力学。在快时间尺度上,脉动血流动力学由沃默斯利的可变形壁解析解描述。给出了对称和不对称树状结构的示例,为正常肺动脉脉管系统提供了基线特征。将结果与关于肺动脉形态学、结构和力学的各种文献数据进行比较。所开发的框架展示了进行高级参数研究以及未来PAH的G&R和血流动力学建模的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验