State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
Department of Plastic and Reconstruction Surgery, Zhongda Hospital, Southeast University, 87 Dingjiaqiao Street, Nanjing, Jiangsu Province, China.
Cell Mol Life Sci. 2023 Mar 14;80(4):86. doi: 10.1007/s00018-023-04743-6.
Mechanosensitive hair cells (HCs) in the cochlear sensory epithelium are critical for sound detection and transduction. Mammalian HCs in the cochlea undergo cytogenesis during embryonic development, and irreversible damage to hair cells postnatally is a major cause of deafness. During the development of the organ of Corti, HCs and supporting cells (SCs) originate from the same precursors. In the neonatal cochlea, damage to HCs activates adjacent SCs to act as HC precursors and to differentiate into new HCs. However, the plasticity of SCs to produce new HCs is gradually lost with cochlear development. Here, we delineate an essential role for the guanine nucleotide exchange factor Net1 in SC trans-differentiation into HCs. Net1 overexpression mediated by AAV-ie in SCs promoted cochlear organoid formation and HC differentiation under two and three-dimensional culture conditions. Also, AAV-Net1 enhanced SC proliferation in Lgr5-EGFP mice and HC generation as indicated by lineage tracing of HCs in the cochleae of Lgr5-EGFP/Rosa26-tdTomato mice. We further found that the up-regulation of Wnt/β-catenin and Notch signaling in AAV-Net1-transduced cochleae might be responsible for the SC proliferation and HC differentiation. Also, Net1 overexpression in SCs enhanced SC proliferation and HC regeneration and survival after HC damage by neomycin. Taken together, our study suggests that Net1 might serve as a potential target for HC regeneration and that AAV-mediated gene regulation may be a promising approach in stem cell-based therapy in hearing restoration.
机械敏感毛细胞(HCs)在耳蜗感觉上皮中对声音检测和转导至关重要。耳蜗中的哺乳动物 HCs 在胚胎发育过程中经历细胞发生,而出生后 HCs 的不可逆损伤是耳聋的主要原因。在 Corti 器官的发育过程中,HCs 和支持细胞(SCs)起源于相同的前体细胞。在新生耳蜗中,HCs 的损伤激活相邻的 SCs 作为 HCs 前体并分化为新的 HCs。然而,随着耳蜗发育,SCs 产生新 HCs 的可塑性逐渐丧失。在这里,我们描述了鸟嘌呤核苷酸交换因子 Net1 在 SC 向 HCs 转化中的重要作用。AAV-ie 在 SC 中的过表达介导了 Net1,在二维和三维培养条件下促进了耳蜗类器官的形成和 HCs 的分化。此外,AAV-Net1 增强了 Lgr5-EGFP 小鼠中的 SC 增殖和 HC 的产生,这表明在 Lgr5-EGFP/Rosa26-tdTomato 小鼠耳蜗中的 HCs 谱系追踪。我们进一步发现,AAV-Net1 转导耳蜗中 Wnt/β-catenin 和 Notch 信号的上调可能是 SC 增殖和 HC 分化的原因。此外,SC 中 Net1 的过表达增强了 SC 增殖和 HC 再生,并在新霉素引起 HCs 损伤后增强了 HC 的存活。总之,我们的研究表明,Net1 可能作为 HC 再生的潜在靶点,AAV 介导的基因调控可能是听力恢复中基于干细胞治疗的有前途的方法。