Suppr超能文献

一维共价有机框架作为锂离子电池的高性能正极材料。

One-Dimensional Covalent Organic Framework as High-Performance Cathode Materials for Lithium-Ion Batteries.

机构信息

Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.

出版信息

Small. 2023 Jun;19(24):e2300518. doi: 10.1002/smll.202300518. Epub 2023 Mar 14.

Abstract

Covalent organic frameworks (COFs) have emerged as a new class of cathode materials for energy storage in recent years. However, they are limited to two-dimensional (2D) or three-dimensional (3D) framework structures. Herein, this work reports designed synthesis of a redox-active one-dimensional (1D) COF and its composites with 1D carbon nanotubes (CNTs) via in situ growth. Used as cathode materials for Li-ion batteries, the 1D COF@CNT composites with unique dendritic core-shell structure can provide abundant and easily accessible redox-active sites, which contribute to improve diffusion rate of lithium ions and the corresponding specific capacity. This synergistic structural design enables excellent electrochemical performance of the cathodes, giving rise to 95% utilization of redox-active sites, high rate capability (81% capacity retention at 10 C), and long cycling stability (86% retention after 600 cycles at 5 C). As the first example to explore the application of 1D COFs in the field of energy storage, this study demonstrates the great potential of this novel type of linear crystalline porous polymers in battery technologies.

摘要

近年来,共价有机框架(COFs)作为一种新型储能阴极材料而受到关注。然而,它们仅限于二维(2D)或三维(3D)框架结构。本工作通过原位生长,设计合成了一种具有氧化还原活性的一维(1D)COF 及其与 1D 碳纳米管(CNTs)的复合材料。作为锂离子电池的阴极材料,具有独特枝晶核壳结构的 1D COF@CNT 复合材料可以提供丰富且易于接近的氧化还原活性位,这有助于提高锂离子的扩散率和相应的比容量。这种协同结构设计使阴极具有优异的电化学性能,可实现 95%的氧化还原活性位利用率、高倍率性能(在 10 C 时保持 81%的容量)和长循环稳定性(在 5 C 时循环 600 次后保持 86%的容量)。作为探索一维 COFs 在储能领域应用的首例研究,本研究表明了这种新型线性结晶多孔聚合物在电池技术中的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验