Cuong Tran Dinh, Phan Anh D
Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Vietnam.
Phenikaa Institute for Advanced Study (PIAS), Phenikaa University, Hanoi 12116, Vietnam.
Phys Chem Chem Phys. 2023 Mar 29;25(13):9073-9082. doi: 10.1039/d3cp00071k.
Beryllium is a vital alkaline-earth metal for plasma physics, space science, and nuclear technology. Unfortunately, its accurate phase diagram is clouded by many controversial results, even though solid beryllium can only exist with hcp or bcc crystalline structures. Herein, we offer a simple quantum-statistical solution to the above problem. Our core idea is to develop the moment expansion technique to determine the Helmholtz free energy under extreme conditions. This strategy helps elucidate the underlying correlation among symmetric characteristics, vibrational excitations, and physical stabilities. In particular, our analyses reveal that the appearance of anharmonic effects forcefully straightens up the hcp-bcc boundary. This phenomenon explains why it has been difficult to detect bcc signatures diamond-anvil-cell measurements. Besides, we modify the work-heat equivalence principle to quickly obtain the high-pressure melting profile from the room-temperature equation of state. The hcp-bcc-liquid triple point of beryllium is found at 165 GPa and 4559 K. Our theoretical findings agree excellently with cutting-edge simulations adopting the phonon quasiparticle method and the thermodynamic integration. Finally, we consider the principal Hugoniot curve and its secondary branches to explore the behaviors of beryllium under shock compression. Our predictions would be advantageous for designing inertial-confinement-fusion experiments.
铍是等离子体物理学、空间科学和核技术中一种至关重要的碱土金属。不幸的是,尽管固态铍只能以六方密堆积(hcp)或体心立方(bcc)晶体结构存在,但其精确的相图却被许多有争议的结果所掩盖。在此,我们为上述问题提供了一种简单的量子统计解决方案。我们的核心思想是开发矩展开技术,以确定极端条件下的亥姆霍兹自由能。这一策略有助于阐明对称特性、振动激发和物理稳定性之间的潜在关联。特别是,我们的分析表明,非谐效应的出现有力地拉直了hcp - bcc边界。这一现象解释了为什么在金刚石对顶砧测量中难以检测到bcc特征。此外,我们修改了功热等效原理,以便从室温状态方程快速获得高压熔化曲线。发现铍的hcp - bcc - 液相三相点位于165 GPa和4559 K。我们的理论发现与采用声子准粒子方法和热力学积分的前沿模拟结果非常吻合。最后,我们考虑主雨贡纽曲线及其次级分支,以探索铍在冲击压缩下的行为。我们的预测将有利于设计惯性约束聚变实验。