Faculty of Sport Science, Ruhr-University Bochum, Bochum, Germany.
Department of Economics, Clausthal University of Technology, Clausthal-Zellerfeld, Germany.
PLoS One. 2023 Mar 15;18(3):e0282112. doi: 10.1371/journal.pone.0282112. eCollection 2023.
Using a reinforcement-learning algorithm, we model an agent-based simulation of a public goods game with endogenous punishment institutions. We propose an outcome-based model of social preferences that determines the agent's utility, contribution, and voting behavior during the learning procedure. Comparing our simulation to experimental evidence, we find that the model can replicate human behavior and we can explain the underlying motives of this behavior. We argue that our approach can be generalized to more complex simulations of human behavior.
我们使用强化学习算法,对具有内生惩罚机制的公共物品博弈进行了基于主体的仿真模拟。我们提出了一种基于结果的社会偏好模型,该模型决定了主体在学习过程中的效用、贡献和投票行为。通过将我们的模拟与实验证据进行比较,我们发现该模型可以复制人类行为,并且可以解释这种行为的潜在动机。我们认为,我们的方法可以推广到更复杂的人类行为模拟中。