垂直排列的 SnS 中空穴辅助选择性探测 NO 分子的研究。

Investigations of Vacancy-Assisted Selective Detection of NO Molecules in Vertically Aligned SnS.

机构信息

Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, India.

Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342030, India.

出版信息

ACS Sens. 2023 Mar 24;8(3):1357-1367. doi: 10.1021/acssensors.3c00133. Epub 2023 Mar 15.

Abstract

Two important methods for enhancing gas sensing performance are vacancy/defect and interlayer engineering. Tin sulfide (SnS) has recently attracted much attention for sensing of the NO gas due to its active surface sites and tunable electronic structure. Herein, SnS has been synthesized by the chemical vapor deposition (CVD) method followed by nitrogen plasma treatment with different exposure times for fast detection of NO molecules. Plasma treatment created a substantial number of surface vacancies on SnS flakes, which were controlled by the exposure period to modify the surface of flakes. After 12 min of nitrogen plasma treatment, SnS nanoflakes show considerable improvement in NO sensing characteristics, including a high sensing response of ∼264% toward 100 ppm NO at 120°C. The enhancement in the relative response of the sensor is due to the electronic interaction between NO molecules and the S vacancies on the surface of SnS. Density functional theory (DFT) computations indicate that the S-vacancy defects on the surface dominate the effective NO detection and the NO adsorption mechanism transition from physisorption to chemisorption. Adsorption kinetics of the NO gas over SnS nanoflake-based chemiresistor sensors were studied using the Lee and Strano model [ 2005, 21(11), 5192-5196]. The irreversible rate of the reaction for various NO concentrations exposed to the gas sensor is extracted using this model, which also appropriately describes the response curves. The forward rate constant of the irreversible gas sensor increased with the increase of the N plasma treatment time and reached the maximum in the 12 min plasma-treated sample. Through defect engineering, this research may open up new vistas for the design and synthesis of 2D materials with enhanced sensing properties.

摘要

两种提高气体传感性能的重要方法是空位/缺陷和层间工程。由于其活性表面位和可调谐的电子结构,硫化锡 (SnS) 最近因其对 NO 气体的传感而受到广泛关注。在此,通过化学气相沉积 (CVD) 法合成了 SnS,然后进行不同暴露时间的氮等离子体处理,以快速检测 NO 分子。等离子体处理在 SnS 薄片上产生了大量的表面空位,这些空位通过暴露时间来控制,以修饰薄片的表面。经过 12 分钟的氮等离子体处理,SnS 纳米薄片在 NO 传感特性方面表现出相当大的改善,包括在 120°C 下对 100 ppm NO 的传感响应高达约 264%。传感器相对响应的增强是由于 NO 分子与 SnS 表面 S 空位之间的电子相互作用。密度泛函理论 (DFT) 计算表明,表面的 S 空位缺陷主导了有效的 NO 检测,并且 NO 吸附机制从物理吸附转变为化学吸附。使用 Lee 和 Strano 模型 [2005, 21(11), 5192-5196] 研究了基于 SnS 纳米薄片的化学电阻传感器对 NO 气体的吸附动力学。通过该模型提取了暴露于气体传感器的各种 NO 浓度下反应的不可逆速率,该模型还适当地描述了响应曲线。不可逆气体传感器的正向速率常数随 N 等离子体处理时间的增加而增加,并在 12 分钟等离子体处理的样品中达到最大值。通过缺陷工程,这项研究可能为设计和合成具有增强传感性能的二维材料开辟新的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索