UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
Curr Biol. 2023 Apr 10;33(7):1249-1264.e7. doi: 10.1016/j.cub.2023.02.051. Epub 2023 Mar 14.
Mechanisms that entrain and pace rhythmic epileptiform discharges remain debated. Traditionally, the quest to understand them has focused on interneuronal networks driven by synaptic GABAergic connections. However, synchronized interneuronal discharges could also trigger the transient elevations of extracellular GABA across the tissue volume, thus raising tonic conductance (G) of synaptic and extrasynaptic GABA receptors in multiple cells. Here, we monitor extracellular GABA in hippocampal slices using patch-clamp GABA "sniffer" and a novel optical GABA sensor, showing that periodic epileptiform discharges are preceded by transient, region-wide waves of extracellular GABA. Neural network simulations that incorporate volume-transmitted GABA signals point to a cycle of GABA-driven network inhibition and disinhibition underpinning this relationship. We test and validate this hypothesis using simultaneous patch-clamp recordings from multiple neurons and selective optogenetic stimulation of fast-spiking interneurons. Critically, reducing GABA uptake in order to decelerate extracellular GABA fluctuations-without affecting synaptic GABAergic transmission or resting GABA levels-slows down rhythmic activity. Our findings thus unveil a key role of extrasynaptic, volume-transmitted GABA in pacing regenerative rhythmic activity in brain networks.
使节律性癫痫样放电同步和起搏的机制仍存在争议。传统上,为了理解这些机制,人们的研究重点一直放在受突触 GABA 能连接驱动的中间神经元网络上。然而,同步的中间神经元放电也可能引发细胞外 GABA 在整个组织体积中的短暂升高,从而提高多个细胞中突触和细胞外 GABA 受体的紧张性电导 (G)。在这里,我们使用膜片钳 GABA“嗅探器”和一种新型的光学 GABA 传感器在海马切片中监测细胞外 GABA,结果表明周期性癫痫样放电之前存在短暂的、全区域的细胞外 GABA 波。包含体积传递 GABA 信号的神经网络模拟指出,周期性癫痫样放电的节律性活动是 GABA 驱动的网络抑制和去抑制循环的基础。我们使用来自多个神经元的同时膜片钳记录和快速放电中间神经元的选择性光遗传学刺激来测试和验证这一假设。关键的是,通过降低 GABA 摄取来减缓细胞外 GABA 波动——而不影响突触 GABA 能传递或静息 GABA 水平——会减缓节律性活动。因此,我们的发现揭示了细胞外、体积传递的 GABA 在大脑网络中起搏再生性节律性活动中的关键作用。