Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, University College London, London WC1N 3BG, United Kingdom.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):504-9. doi: 10.1073/pnas.1308388110. Epub 2013 Dec 16.
The spiking output of interneurons is key for rhythm generation in the brain. However, what controls interneuronal firing remains incompletely understood. Here we combine dynamic clamp experiments with neural network simulations to understand how tonic GABAA conductance regulates the firing pattern of CA3 interneurons. In baseline conditions, tonic GABAA depolarizes these cells, thus exerting an excitatory action while also reducing the excitatory postsynaptic potential (EPSP) amplitude through shunting. As a result, the emergence of weak tonic GABAA conductance transforms the interneuron firing pattern driven by individual EPSPs into a more regular spiking mode determined by the cell intrinsic properties. The increased regularity of spiking parallels stronger synchronization of the local network. With further increases in tonic GABAA conductance the shunting inhibition starts to dominate over excitatory actions and thus moderates interneuronal firing. The remaining spikes tend to follow the timing of suprathreshold EPSPs and thus become less regular again. The latter parallels a weakening in network synchronization. Thus, our observations suggest that tonic GABAA conductance can bidirectionally control brain rhythms through changes in the excitability of interneurons and in the temporal structure of their firing patterns.
神经元的爆发输出是大脑产生节律的关键。然而,控制神经元放电的机制仍不完全清楚。在这里,我们结合动态钳位实验和神经网络模拟来理解紧张型 GABA 电导如何调节 CA3 中间神经元的放电模式。在基线条件下,紧张型 GABA 使这些细胞去极化,从而产生兴奋作用,同时通过分流减少兴奋性突触后电位 (EPSP) 幅度。结果,弱紧张型 GABA 电导的出现将由单个 EPSP 驱动的中间神经元放电模式转化为由细胞固有特性决定的更规则的放电模式。放电的规律性增加与局部网络的同步性增强平行。随着紧张型 GABA 电导的进一步增加,分流抑制开始超过兴奋作用,从而调节中间神经元的放电。剩余的尖峰往往跟随阈上 EPSP 的时间,因此再次变得不那么规则。后者与网络同步性的减弱平行。因此,我们的观察表明,紧张型 GABA 电导可以通过改变中间神经元的兴奋性和其放电模式的时间结构,双向控制大脑节律。