Suppr超能文献

二氮还原耦合甲醇氧化在焦磷酸钴作为双功能催化剂上实现低过电位电化学 NH3 合成。

Dinitrogen Reduction Coupled with Methanol Oxidation for Low Overpotential Electrochemical NH Synthesis Over Cobalt Pyrophosphate as Bifunctional Catalyst.

机构信息

Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India.

出版信息

Small. 2023 Jun;19(24):e2208272. doi: 10.1002/smll.202208272. Epub 2023 Mar 15.

Abstract

Electrochemical dinitrogen (N ) reduction to ammonia (NH ) coupled with methanol electro-oxidation is presented in the current work. Here, methanol oxidation reaction (MOR) is proposed as an alternative anode reaction to oxygen evolution reaction (OER) to accomplish electrons-induced reduction of N to NH at cathode and oxidation of methanol at anode in alkaline media thereby reducing the overall cell voltage for ammonia production. Cobalt pyrophosphate micro-flowers assembled by nanosheets are synthesized via a surfactant-assisted sonochemical approach. By virtue of structural and morphological advantages, the maximum Faradaic efficiency of 43.37% and NH yield rate of 159.6 µg h mg is achieved at a potential of -0.2 V versus RHE. The proposed catalyst is shown to also exhibit a very high activity (100 mA mg at 1.48 V), durability (2 h) and production of value-added formic acid at anode (2.78 µmol h mg and F.E. of 59.2%). The overall NH synthesis is achieved at a reduced cell voltage of 1.6 V (200 mV less than NRR-OER coupled NH synthesis) when OER at anode is replaced with MOR and a high NH yield rate of 95.2 µg h mg and HCOOH formation rate of 2.53 µmol h mg are witnessed under full-cell conditions.

摘要

本工作提出了电化学氮气(N )还原为氨(NH )与甲醇电氧化偶联。在此,甲醇氧化反应(MOR)被提议作为析氧反应(OER)的替代阳极反应,以在碱性介质中在阴极实现电子诱导 N 还原为 NH ,并在阳极氧化甲醇,从而降低氨生产的总电池电压。通过表面活性剂辅助超声化学方法合成了由纳米片组装的焦磷酸钴微花。由于结构和形态上的优势,在相对于 RHE 的-0.2 V 下实现了 43.37%的最大法拉第效率和 159.6 µg h mg 的 NH 产率。所提出的催化剂还表现出非常高的活性(在 1.48 V 时为 100 mA mg )、耐久性(2 h)和在阳极生产增值甲酸(2.78 µmol h mg 和 F.E. 为 59.2%)。当用 MOR 替代 OER 作为阳极的析氧反应时,可在 1.6 V 的降低电池电压下实现总 NH 合成(比 NRR-OER 耦合 NH 合成低 200 mV),并且在全电池条件下观察到 95.2 µg h mg 的高 NH 产率和 2.53 µmol h mg 的 HCOOH 形成速率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验