Deng Chaoyuan, Xie Shijie, Li Youji, Zhao Yukun, Zhou Peng, Sheng Hua, Ji Hongwei, Chen Chuncheng, Zhao Jincai
Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
J Phys Chem A. 2023 Mar 30;127(12):2787-2794. doi: 10.1021/acs.jpca.3c00634. Epub 2023 Mar 15.
Atomically dispersed catalysts (ADCs) with a well-defined structure are theoretically desirable for a high-selectivity photocatalytic reaction. However, achieving high product selectivity remains a practical challenge for ADCs-based photocatalysts. Herein, we reveal a spin polarization effect on achieving high product selectivity (95.0%) toward the photocatalytic nitrobenzene (PhNO) hydrogenation to aniline (PhNH) on atomically dispersed Fe site-loaded graphitic carbon nitride (Fe/g-CN). In combination with the Gibbs free energy diagram and electronic structure analysis, the origin of the photocatalytic performance is attributed not only to the strong metal-support interaction between the Fe site and g-CN, but more importantly to the strong spin polarization effect that promotes the potential-determining step (PDS) of *PhNO to *PhNOH. This work could be helpful for the design of ADCs-based photocatalysts in view of the spin polarization effect.
具有明确结构的原子分散催化剂(ADCs)理论上适用于高选择性光催化反应。然而,对于基于ADCs的光催化剂而言,实现高产物选择性仍然是一个实际挑战。在此,我们揭示了一种自旋极化效应,该效应有助于在原子分散的负载铁位点的石墨相氮化碳(Fe/g-CN)上实现光催化硝基苯(PhNO)加氢制苯胺(PhNH)的高产物选择性(95.0%)。结合吉布斯自由能图和电子结构分析,光催化性能的起源不仅归因于铁位点与g-CN之间强烈的金属-载体相互作用,更重要的是归因于促进PhNO到PhNOH的电位决定步骤(PDS)的强自旋极化效应。鉴于自旋极化效应,这项工作可能有助于基于ADCs的光催化剂的设计。