Goydin A P, Shutova S V, Fabrikantov O L
Tambov branch of S.N. Fedorov National Medical Research Center «MNTK «Eye Microsurgery», Tambov, Russia.
Medical Institute of Tambov State University named after G.R. Derzhavin, Tambov, Russia.
Vestn Oftalmol. 2023;139(1):16-26. doi: 10.17116/oftalma202313901116.
This study evaluates the diagnostic capabilities and the prognostic value of nailfold capillaroscopy data of patients with diabetic retinopathy (DR) to develop an algorithm of monitoring patients with type 2 diabetes mellitus.
The study involved 90 patients (mean age 67 years), among them 31 with nonproliferative diabetic retinopathy, 29 patients with proliferative DR and 30 patients without retinopathy. In addition to conventional ophthalmological examination, optical coherence tomography angiography (OCTA) on the Optovue RTVue-100 device (USA) was performed using en face vessel density protocol to examine the state of the microvasculature of the superficial and deep layers of the vascular plexus of the central retinal zone, as well as nailfold capillaroscopy using computerized capillaroscope KK-01 (ZAO Centr Analiz veshhestv, Russia).
The cut-off points for detecting the presence of non-proliferative DR (capillary network density below 38.4%, arterial velocity below 512 mm/s and venous blood flow below 585 mm/s), and the presence of proliferative DR (capillary network density below 30.4%, the arterial velocity below 451 mm/s and the venous blood flow below 441 mm/s) were identified according to ROC-analysis of nailfold capillaroscopy data. In the diagnosis of proliferative DR the capillary network density parameter has a slightly higher diagnostic information value (AUC=0.963) than arterial blood flow velocity (AUC=0.941) or venous blood flow velocity (AUC=0.909). Using the identified critical parameters for predicting the initial and proliferative DR, we created a diagnostic algorithm involving a comprehensive assessment of all characteristics.
The study revealed that nailfold capillaroscopy indicators (capillary network density, velocity of arterial and venous blood flow) have high diagnostic information value for detecting both non-proliferative and proliferative retinopathy. We constructed mathematical models for predicting DR with an accuracy of predicting the presence of a non-proliferative stage in 92.2% of cases and a proliferative stage in 94.4% of cases. For practical use in clinical environment, we created a computer program calculating the results of DR predictions according to nailfold capillaroscopy data.
本研究评估糖尿病视网膜病变(DR)患者甲襞毛细血管镜检查数据的诊断能力和预后价值,以制定2型糖尿病患者的监测算法。
本研究纳入90例患者(平均年龄67岁),其中31例为非增殖性糖尿病视网膜病变患者,29例为增殖性DR患者,30例无视网膜病变患者。除常规眼科检查外,使用美国Optovue RTVue - 100设备通过表面血管密度方案进行光学相干断层扫描血管造影(OCTA),以检查视网膜中央区血管丛浅层和深层微血管的状态,同时使用计算机化毛细血管镜KK - 01(俄罗斯ZAO Centr Analiz veshhestv公司)进行甲襞毛细血管镜检查。
根据甲襞毛细血管镜检查数据的ROC分析,确定了检测非增殖性DR(毛细血管网络密度低于38.4%,动脉血流速度低于512 mm/s,静脉血流低于585 mm/s)和增殖性DR(毛细血管网络密度低于30.4%,动脉血流速度低于451 mm/s,静脉血流低于441 mm/s)的截断点。在增殖性DR的诊断中,毛细血管网络密度参数的诊断信息价值(AUC = 0.963)略高于动脉血流速度(AUC = 0.941)或静脉血流速度(AUC = 0.909)。利用确定的预测初始和增殖性DR的关键参数,我们创建了一种诊断算法,对所有特征进行综合评估。
该研究表明,甲襞毛细血管镜检查指标(毛细血管网络密度、动脉和静脉血流速度)在检测非增殖性和增殖性视网膜病变方面具有较高的诊断信息价值。我们构建了预测DR的数学模型,预测非增殖期存在的准确率为92.2%,增殖期为94.4%。为在临床环境中实际应用,我们创建了一个根据甲襞毛细血管镜检查数据计算DR预测结果的计算机程序。