Suppr超能文献

细菌荚膜生物合成中 KpsC 的双保留β-Kdo 糖基转移酶模块的机制和连接特异性。

Mechanism and linkage specificities of the dual retaining β-Kdo glycosyltransferase modules of KpsC from bacterial capsule biosynthesis.

机构信息

Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.

Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.

出版信息

J Biol Chem. 2023 May;299(5):104609. doi: 10.1016/j.jbc.2023.104609. Epub 2023 Mar 15.

Abstract

KpsC is a dual-module glycosyltransferase (GT) essential for "group 2" capsular polysaccharide biosynthesis in Escherichia coli and other Gram-negative pathogens. Capsules are vital virulence determinants in high-profile pathogens, making KpsC a viable target for intervention with small-molecule therapeutic inhibitors. Inhibitor development can be facilitated by understanding the mechanism of the target enzyme. Two separate GT modules in KpsC transfer 3-deoxy-β-d-manno-oct-2-ulosonic acid (β-Kdo) from cytidine-5'-monophospho-β-Kdo donor to a glycolipid acceptor. The N-terminal and C-terminal modules add alternating Kdo residues with β-(2→4) and β-(2→7) linkages, respectively, generating a conserved oligosaccharide core that is further glycosylated to produce diverse capsule structures. KpsC is a retaining GT, which retains the donor anomeric carbon stereochemistry. Retaining GTs typically use an Si (substitution nucleophilic internal return) mechanism, but recent studies with WbbB, a retaining β-Kdo GT distantly related to KpsC, strongly suggest that this enzyme uses an alternative double-displacement mechanism. Based on the formation of covalent adducts with Kdo identified here by mass spectrometry and X-ray crystallography, we determined that catalytically important active site residues are conserved in WbbB and KpsC, suggesting a shared double-displacement mechanism. Additional crystal structures and biochemical experiments revealed the acceptor binding mode of the β-(2→4)-Kdo transferase module and demonstrated that acceptor recognition (and therefore linkage specificity) is conferred solely by the N-terminal α/β domain of each GT module. Finally, an Alphafold model provided insight into organization of the modules and a C-terminal membrane-anchoring region. Altogether, we identified key structural and mechanistic elements providing a foundation for targeting KpsC.

摘要

KpsC 是一种双模块糖基转移酶(GT),对于大肠杆菌和其他革兰氏阴性病原体“第 2 组”荚膜多糖生物合成至关重要。荚膜是高知名度病原体的重要毒力决定因素,这使得 KpsC 成为小分子治疗抑制剂干预的可行目标。通过了解靶酶的机制,可以促进抑制剂的开发。KpsC 中的两个独立 GT 模块将 3-脱氧-β-d-甘露-oct-2-ulosonic 酸(β-Kdo)从胞苷-5'-单磷酸-β-Kdo 供体转移到糖脂受体。N 端和 C 端模块分别以β-(2→4)和β-(2→7)键合方式添加交替的 Kdo 残基,生成保守的寡糖核心,进一步糖基化以产生不同的荚膜结构。KpsC 是一种保留 GT,它保留供体的端基碳立体化学。保留 GT 通常使用 Si(取代亲核内部返回)机制,但最近对与 KpsC 关系较远的保留β-Kdo GT 的 WbbB 的研究强烈表明,该酶使用替代的双置换机制。基于通过质谱和 X 射线晶体学在此处鉴定的与 Kdo 形成的共价加合物,我们确定了 WbbB 和 KpsC 中催化重要的活性位点残基保守,表明存在共享的双置换机制。其他晶体结构和生化实验揭示了β-(2→4)-Kdo 转移酶模块的受体结合模式,并证明受体识别(因此连接特异性)仅由每个 GT 模块的 N 端α/β 结构域赋予。最后,Alphafold 模型提供了对模块组织和 C 端膜锚定区域的深入了解。总之,我们确定了关键的结构和机制元素,为靶向 KpsC 提供了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验