Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
J Biol Chem. 2023 May;299(5):104609. doi: 10.1016/j.jbc.2023.104609. Epub 2023 Mar 15.
KpsC is a dual-module glycosyltransferase (GT) essential for "group 2" capsular polysaccharide biosynthesis in Escherichia coli and other Gram-negative pathogens. Capsules are vital virulence determinants in high-profile pathogens, making KpsC a viable target for intervention with small-molecule therapeutic inhibitors. Inhibitor development can be facilitated by understanding the mechanism of the target enzyme. Two separate GT modules in KpsC transfer 3-deoxy-β-d-manno-oct-2-ulosonic acid (β-Kdo) from cytidine-5'-monophospho-β-Kdo donor to a glycolipid acceptor. The N-terminal and C-terminal modules add alternating Kdo residues with β-(2→4) and β-(2→7) linkages, respectively, generating a conserved oligosaccharide core that is further glycosylated to produce diverse capsule structures. KpsC is a retaining GT, which retains the donor anomeric carbon stereochemistry. Retaining GTs typically use an Si (substitution nucleophilic internal return) mechanism, but recent studies with WbbB, a retaining β-Kdo GT distantly related to KpsC, strongly suggest that this enzyme uses an alternative double-displacement mechanism. Based on the formation of covalent adducts with Kdo identified here by mass spectrometry and X-ray crystallography, we determined that catalytically important active site residues are conserved in WbbB and KpsC, suggesting a shared double-displacement mechanism. Additional crystal structures and biochemical experiments revealed the acceptor binding mode of the β-(2→4)-Kdo transferase module and demonstrated that acceptor recognition (and therefore linkage specificity) is conferred solely by the N-terminal α/β domain of each GT module. Finally, an Alphafold model provided insight into organization of the modules and a C-terminal membrane-anchoring region. Altogether, we identified key structural and mechanistic elements providing a foundation for targeting KpsC.
KpsC 是一种双模块糖基转移酶(GT),对于大肠杆菌和其他革兰氏阴性病原体“第 2 组”荚膜多糖生物合成至关重要。荚膜是高知名度病原体的重要毒力决定因素,这使得 KpsC 成为小分子治疗抑制剂干预的可行目标。通过了解靶酶的机制,可以促进抑制剂的开发。KpsC 中的两个独立 GT 模块将 3-脱氧-β-d-甘露-oct-2-ulosonic 酸(β-Kdo)从胞苷-5'-单磷酸-β-Kdo 供体转移到糖脂受体。N 端和 C 端模块分别以β-(2→4)和β-(2→7)键合方式添加交替的 Kdo 残基,生成保守的寡糖核心,进一步糖基化以产生不同的荚膜结构。KpsC 是一种保留 GT,它保留供体的端基碳立体化学。保留 GT 通常使用 Si(取代亲核内部返回)机制,但最近对与 KpsC 关系较远的保留β-Kdo GT 的 WbbB 的研究强烈表明,该酶使用替代的双置换机制。基于通过质谱和 X 射线晶体学在此处鉴定的与 Kdo 形成的共价加合物,我们确定了 WbbB 和 KpsC 中催化重要的活性位点残基保守,表明存在共享的双置换机制。其他晶体结构和生化实验揭示了β-(2→4)-Kdo 转移酶模块的受体结合模式,并证明受体识别(因此连接特异性)仅由每个 GT 模块的 N 端α/β 结构域赋予。最后,Alphafold 模型提供了对模块组织和 C 端膜锚定区域的深入了解。总之,我们确定了关键的结构和机制元素,为靶向 KpsC 提供了基础。