Suppr超能文献

将废弃物转化为低成本培养基工程用于从新分离的红色灰链霉菌AW22生产生长素:模型开发

Waste valorization as low-cost media engineering for auxin production from the newly isolated Streptomyces rubrogriseus AW22: Model development.

作者信息

Alloun Wiem, Berkani Mohammed, Benaissa Akila, Shavandi Amin, Gares Maroua, Danesh Camellia, Lakhdari Delloula, Ghfar Ayman A, Chaouche Noreddine Kacem

机构信息

Laboratory of Mycology, Biotechnology and Microbial Activity (LaMyBAM), Department of Applied Biology, Constantine 1 University, BP, 325, Aïn El Bey, Constantine, 25017, Algeria.

Biotechnology Laboratory, National Higher School of Biotechnology, Ali Mendjeli University City, BP E66, 25100, Constantine, Algeria.

出版信息

Chemosphere. 2023 Jun;326:138394. doi: 10.1016/j.chemosphere.2023.138394. Epub 2023 Mar 15.

Abstract

Indole-3-acetic acid (IAA) represents a crucial phytohormone regulating specific tropic responses in plants and functions as a chemical signal between plant hosts and their symbionts. The Actinobacteria strain of AW22 with high IAA production ability was isolated in Algeria for the first time and was characterized as Streptomyces rubrogriseus through chemotaxonomic analysis and 16 S rDNA sequence alignment. The suitable medium for a maximum IAA yield was engineered in vitro and in silico using machine learning-assisted modeling. The primary low-cost feedstocks comprised various concentrations of spent coffee grounds (SCGs) and carob bean grounds (CBGs) extracts. Further, we combined the Box-Behnken design from response surface methodology (BBD-RSM) with artificial neural networks (ANNs) coupled with the genetic algorithm (GA). The critical process parameters screened via Plackett-Burman design (PBD) served as BBD and ANN-GA inputs, with IAA yield as the output variable. Analysis of the putative IAA using thin-layer chromatography (TLC) and (HPLC) revealed Rf values equal to 0.69 and a retention time of 3.711 min, equivalent to the authentic IAA. AW 22 achieved a maximum IAA yield of 188.290 ± 0.38 μg/mL using the process parameters generated by the ANN-GA model, consisting of L-Trp, 0.6%; SCG, 30%; T°, 25.8 °C; and pH 9, after eight days of incubation. An R of 99.98%, adding to an MSE of 1.86 × 10 at 129 epochs, postulated higher reliability of ANN-GA-approach in predicting responses, compared with BBD-RSM modeling exhibiting an R of 76.28%. The validation experiments resulted in a 4.55-fold and 4.46-fold increase in IAA secretion, corresponding to ANN-GA and BBD-RSM models, respectively, confirming the validity of both models.

摘要

吲哚-3-乙酸(IAA)是一种关键的植物激素,可调节植物中的特定向性反应,并作为植物宿主与其共生体之间的化学信号。具有高IAA生产能力的放线菌菌株AW22首次在阿尔及利亚分离出来,并通过化学分类分析和16S rDNA序列比对鉴定为红色链霉菌。使用机器学习辅助建模在体外和计算机模拟中设计了用于最大IAA产量的合适培养基。主要的低成本原料包括不同浓度的咖啡渣(SCG)和角豆粉(CBG)提取物。此外,我们将响应面法(BBD-RSM)中的Box-Behnken设计与人工神经网络(ANN)以及遗传算法(GA)相结合。通过Plackett-Burman设计(PBD)筛选出的关键工艺参数用作BBD和ANN-GA的输入,IAA产量作为输出变量。使用薄层色谱(TLC)和(HPLC)对推定的IAA进行分析,结果显示Rf值等于0.69,保留时间为3.711分钟,与真实IAA相当。使用ANN-GA模型生成的工艺参数,即L-色氨酸0.6%、SCG 30%、温度25.8°C和pH 9,AW 22在培养八天后达到了188.290±0.38μg/mL的最大IAA产量。与显示R为76.28%的BBD-RSM建模相比,ANN-GA方法在预测响应方面的R为99.98%,在129个epoch时的均方误差为1.86×10,表明其具有更高的可靠性。验证实验分别使IAA分泌增加了4.55倍和4.46倍,分别对应于ANN-GA和BBD-RSM模型,证实了这两种模型的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验